Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 197667 by SANOGO last updated on 25/Sep/23

Answered by Frix last updated on 26/Sep/23

X, Y∈R^3 , r∈R    (1) N(X)=0 ⇒ X=0 ✓       X≠0 ⇔ x_1 ≠0∨x_2 ≠0∨x_3 ≠0 ⇔ N(X)≠0    (2) N(r×X)=∣r∣×N(X) ✓       N(r×X)=(√(r^2 x_1 ^2 +r^2 x_2 ^2 ))+∣rx_3 ∣=∣r∣(√(x_1 ^2 +x_2 ^2 ))+∣r∣×∣x_3 ∣=∣r∣×N(X)    (3) N(X+Y)≤N(X)+N(Y) ✓       (√((x_1 +y_1 )^2 +(x_2 +y_2 )^2 ))+∣x_3 +y_3 ∣≤(√(x_1 ^2 +x_2 ^2 ))+∣x_3 ∣+(√(y_1 ^2 +y_2 ^2 ))+∣y_3 ∣       (a)       (√((x_1 +y_1 )^2 +(x_2 +y_2 )^2 ))≤(√(x_1 ^2 +x_2 ^2 ))+(√(y_1 ^2 +y_2 ^2 ))       (x_1 +y_1 )^2 +(x_2 +y_2 )^2 ≤x_1 ^2 +x_2 ^2 +y_1 ^2 +y_2 ^2 +2(√((x_1 ^2 +x_2 ^2 )(y_1 ^2 +y_2 ^2 )))       x_1 y_1 +x_2 y_2 ≤(√(x_1 ^2 y_1 ^2 +x_1 ^2 y_2 ^2 +x_2 ^2 y_1 ^2 +x_2 ^2 y_2 ^2 ))       x_1 ^2 y_1 ^2 +2x_1 x_2 y_1 y_2 +x_2 ^2 y_2 ^2 ≤x_1 ^2 y_1 ^2 +x_1 ^2 y_2 ^2 +x_2 ^2 y_1 ^2 +x_2 ^2 y_2 ^2        0≤x_1 ^2 y_2 ^2 −2x_1 y_2 x_2 y_1 +x_2 ^2 y_1 ^2        0≤(x_1 y_2 −x_2 y_1 )^2  ✓       (b)       ∣x_3 +y_3 ∣≤∣x_3 ∣+∣y_3 ∣       (x_3 +y_3 )^2 ≤x_3 ^2 +y_3 ^2 +2∣x_3 ∣∣y_3 ∣       2x_3 y_3 ≤2∣x_3 y_3 ∣ ✓    ⇒ N(X) est une norme    X∈R^n , n∈N ⇒  N_1 (X) est une norme ∧ N_2 (X) est une norme  ⇒ N_1 (X) est e^� quivalente a^�  N_2 (X)

X,YR3,rR(1)N(X)=0X=0X0x10x20x30N(X)0(2)N(r×X)=∣r×N(X)N(r×X)=r2x12+r2x22+rx3∣=∣rx12+x22+r×x3∣=∣r×N(X)(3)N(X+Y)N(X)+N(Y)(x1+y1)2+(x2+y2)2+x3+y3∣⩽x12+x22+x3+y12+y22+y3(a)(x1+y1)2+(x2+y2)2x12+x22+y12+y22(x1+y1)2+(x2+y2)2x12+x22+y12+y22+2(x12+x22)(y12+y22)x1y1+x2y2x12y12+x12y22+x22y12+x22y22x12y12+2x1x2y1y2+x22y22x12y12+x12y22+x22y12+x22y220x12y222x1y2x2y1+x22y120(x1y2x2y1)2(b)x3+y3∣⩽∣x3+y3(x3+y3)2x32+y32+2x3∣∣y32x3y32x3y3N(X)estunenormeXRn,nNN1(X)estunenormeN2(X)estunenormeN1(X)estequivalente´a`N2(X)

Commented by SANOGO last updated on 26/Sep/23

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com