Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 197772 by Erico last updated on 28/Sep/23

Can anyone do this?  ∫^( +∞) _( 1) ((t−1)/((1+t)^3  lnt))dt

Cananyonedothis?1+t1(1+t)3lntdt

Commented by witcher3 last updated on 28/Sep/23

we can Give   close forme of  (((t−1)^m )/(ln^n (t))).(dt/((1+t)^p ))  m≥n  p≥m+2  m,n,p ∈N

wecanGivecloseformeof(t1)mlnn(t).dt(1+t)pmnpm+2m,n,pN

Answered by witcher3 last updated on 03/Oct/23

(1/t)=y  I=∫_0 ^1 ((y−1)/((y+1)^3 ln(y)))  y→0 ((y−1)/((y+1)ln(y)))→0  y→1,((y−1)/(ln(y))).(1/((y+1)^3 ))→(1/8)  (1/(ln(y)))=−∫_0 ^∞ y^a dy     y∈]0,1[ ln(t)<0  I=−∫_0 ^∞ ∫_0 ^1 ((y−1)/((y+1)^3 ))y^a dyda=  ((y−1)/((y+1)^3 ))=(y−1).(−(1/2)Σ_(n≥2) (−1)^n n(n−1)y^(n−2) )  =−(1/2)Σ_(n≥2) (−1)^n n(n−1)(y^(n−1) −y^(n−2) )  I=(1/2)∫_0 ^∞ ∫_0 ^1 Σ_(n≥2) (−1)^n n(n−1)(y^(n+a−1) −y^(n+a−2) )dy  =(1/2)Σ_(n≥2) (−1)^n n(n−1)∫_0 ^∞ (1/((n+a)))−(1/((n+a−1)))da  =(1/2)Σ_(n≥2) (−1)^n n(n−1)ln(((n−1)/n))  =(1/2)Σ_(n≥1) 2n(2n−1)ln(((2n−1)/(2n)))−(2n+1)(2n)ln(((2n)/(2n+1)))  =−Σ_(n≥1) [2n(2n)^2 ln(2n)+2(2n+1)(2n+1)^2 ln(2n+1)]  −Σ_(n≥1) n^2 ln(n)=ζ^∗ ′(−2)  ζ^∗   prlangement of Zeta function Over C−plane−{1}

1t=yI=01y1(y+1)3ln(y)y0y1(y+1)ln(y)0y1,y1ln(y).1(y+1)3181ln(y)=0yadyy]0,1[ln(t)<0I=001y1(y+1)3yadyda=y1(y+1)3=(y1).(12n2(1)nn(n1)yn2)=12n2(1)nn(n1)(yn1yn2)I=12001n2(1)nn(n1)(yn+a1yn+a2)dy=12n2(1)nn(n1)01(n+a)1(n+a1)da=12n2(1)nn(n1)ln(n1n)=12n12n(2n1)ln(2n12n)(2n+1)(2n)ln(2n2n+1)=n1[2n(2n)2ln(2n)+2(2n+1)(2n+1)2ln(2n+1)]n1n2ln(n)=ζ(2)ζprlangementofZetafunctionOverCplane{1}

Answered by MathematicalUser2357 last updated on 15/Jan/24

0.213011170749

0.213011170749

Terms of Service

Privacy Policy

Contact: info@tinkutara.com