All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 197819 by mnjuly1970 last updated on 30/Sep/23
findthevalueof:Ο=ββn=1(β1)nβ1H2nn=?where,Hn=1+12+13+...+1n
Answered by witcher3 last updated on 04/Oct/23
β«01βxnβ1ln(1βx)dx=HnnΞ£(β1)nβ1H2nn=2βnβ©Ύ1β«01(β1)nx2nβ2ln(1βx)=2β«01βln(1βx)(1+x2)=β2β«0Ο4ln(cos(t)βsin(t))βln(cos(t))dt=β2β«0Ο4ln(2cos(t+Ο4))βln(cos(t))dt=β2ln(2).Ο4β2β«0Ο4ln(tg(t))dt=βln(2)Ο4+2G
Terms of Service
Privacy Policy
Contact: info@tinkutara.com