All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 197821 by mnjuly1970 last updated on 30/Sep/23
findthevalueof:Ω=∫01ln(1+1x2)2+x2dx=?
Answered by witcher3 last updated on 05/Oct/23
x→1xΩ=∫1∞ln(1+x2)(2x2+1)dxΩ(a)=∫1∞ln(1+ax2)(2x2+1),Ω(a)=0Ω′(a)=∫1∞x2(1+ax2)(2x2+1)=∫1∞2x2+1−(1+ax2)(2−a)(2x2+1)(1+ax2)=12−a{∫1∞dx1+ax2−∫1∞dx1+2x2}=1(2−a)a(π2−tan−1(a))−1(2−a)2(π2−tan−1(2))−∫01tan−1(a)a(2−a)da=−2∫01tan−1(a)2−a2..cansolvedLi2..butnonnicecloseformez
Terms of Service
Privacy Policy
Contact: info@tinkutara.com