Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 197914 by a.lgnaoui last updated on 04/Oct/23

Determiner la surface hachuree  (voir  figure)   BC=10cm     ∡B=45°      ∡C=30°

Determinerlasurfacehachuree(voirfigure)BC=10cmB=45°C=30°

Commented by a.lgnaoui last updated on 04/Oct/23

Commented by a.lgnaoui last updated on 05/Oct/23

Reponse:  ABsin 45°=ACsin 30°    ((√2)/2)AB=(1/2)AC   ⇒  AC=AB(√2)  BC^2 =AB^2 +AC^2 −2AB×ACcos 105°  100=3AB^2 −2(√2)AB^2 cos 105        =(3−2(√2) cos  105)AB^2       AB=((10)/( (√(3−2(√2) cos 105))))        AB=5,176   •△OBE   sin 45°=((OE)/(OB))=((R1)/(AB−R1))  ⇒(AB−R1)((√2)/2)=R1      AB−R1=R1(√(2 ))      R1=((AB)/(1+(√2)))    R1=((10)/( (1+(√2) )(√((3−2(√2) cos 105)))))        AN         R1=2,14      •∡OFC    sin 30=((R2)/(OC))=((R2)/(AC−R2))    AC=AB(√(2 ))    ⇒AC=5,176×(√2)           AC=7,32     ((AC)/2)−((R2)/2)=R2           R2=((AC)/3)=2,44  •Calcul de la surface  S=S1+S2    S1=  ((𝛑R1^2 ×𝛂)/(360))    −S(△OAM)    S2=((𝛑R2^2 ×𝛃)/(360)) −S(AO′M)   △AOM=((sin A1)/(R1))=((sin 2A1)/(AM))         A1=α    ⇒  ((sin α)/(R1))=((sin 2𝛂)/(AM))       AM=2R1cos 𝛂         S(OSM)=((𝛑R1^2 )/(360))𝛂−((AM)/2)R1cos 𝛂      = ((πR1^2 α)/(360)) −R1^2 cos^2 𝛂    S(AO′M)=((𝛑R2×(105−α))/(360))−R2^2 cos^2 (105−α)  (β=105−α)     (A Suivre)...........    △AOM /AO′M  OM^2 =AO^2 +AM^2 −2AO×AMcos 𝛂  R1^2 =R1^2 +AM^2 −2AM×R1cos 𝛂  0=AM^2 −2AM×R1cos 𝛂              AM=2R1cos 𝛂    (i)    de meme   AM=2R2cos (105−𝛂)  ⇒R1cos 𝛂=R2cos (105−𝛂)    ((cos 𝛂)/(cos(105− 𝛂)))=((R2)/(R1))=((122)/(107))  122(cos 105cos α+sin  105sin α)=107cos α  (122cos 105−107)cos 𝛂+122×sin105sin 𝛂 =0  (107−122cos 105)cos 𝛂=122sin 𝛂  ⇒   tan 𝛂=((107−122cos 105)/(122))=1,135            ∡OAM   =48,6°     AM=4,28cos 𝛂=2,83  ⇒∡AOH ≈90−48=42°          S1=((𝛑R^2 1×84)/(360))−(((2,83)/2))×R1cos 42  S1=3,357−2,25=1,106    S2=((𝛑R2^2 ×57)/(360))−(((2,83)/2))×R2cos 33  =2,961−2,895=0,066        Surface  est   1,106+0,066                                    S=  1,172

Reponse:ABsin45°=ACsin30°22AB=12ACAC=AB2BC2=AB2+AC22AB×ACcos105°100=3AB222AB2cos105=(322cos105)AB2AB=10322cos105AB=5,176OBEsin45°=OEOB=R1ABR1(ABR1)22=R1ABR1=R12R1=AB1+2R1=10(1+2)(322cos105)ANR1=2,14OFCsin30=R2OC=R2ACR2AC=AB2AC=5,176×2AC=7,32AC2R22=R2R2=AC3=2,44CalculdelasurfaceS=S1+S2S1=πR12×α360S(OAM)S2=πR22×β360S(AOM)AOM=sinA1R1=sin2A1AMA1=αsinαR1=sin2αAMAM=2R1cosαS(OSM)=πR12360αAM2R1cosα=πR12α360R12cos2αS(AOM)=πR2×(105α)360R22cos2(105α)(β=105α)(ASuivre)...........AOM/AOMOM2=AO2+AM22AO×AMcosαR12=R12+AM22AM×R1cosα0=AM22AM×R1cosαAM=2R1cosα(i)dememeAM=2R2cos(105α)R1cosα=R2cos(105α)cosαcos(105α)=R2R1=122107122(cos105cosα+sin105sinα)=107cosα(122cos105107)cosα+122×sin105sinα=0(107122cos105)cosα=122sinαtanα=107122cos105122=1,135OAM=48,6°AM=4,28cosα=2,83AOH9048=42°S1=πR21×84360(2,832)×R1cos42S1=3,3572,25=1,106S2=πR22×57360(2,832)×R2cos33=2,9612,895=0,066Surfaceest1,106+0,066S=1,172

Commented by a.lgnaoui last updated on 05/Oct/23

Answered by a.lgnaoui last updated on 06/Oct/23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com