Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 197919 by universe last updated on 04/Oct/23

      I_m      =    ∫_0 ^1 (((⌊2^m x⌋)/3^m ) Σ_(n=m+1) ^∞ ((⌊2^n x⌋)/3^n ))dx        then find the value of        I =   Σ_(m=1) ^∞ I_m   =  ?

Im=01(2mx3mn=m+12nx3n)dxthenfindthevalueofI=m=1Im=?

Answered by witcher3 last updated on 06/Oct/23

2^m x=t  ⇔I_m =(1/2^m )∫_0 ^2^m  (([t])/3^(2m) )Σ_(n≥m+1) (([2^(n−m) t])/3^(n−m) )  ⇒18^m I_m =∫_0 ^2^m  [t]Σ_(n≥1) (([2^n t])/3^n )dt  =Σ_(k=0) ^(2^m −1) ∫_k ^(k+1) k.Σ_(n≥1) (([2^n t])/3^n )dt,2^n t=y  =Σ_k Σ_n ∫_(2^n k) ^((k+1)2^n ) (k/6^n )[y]dy=18^m I_m   ∫_(2^n k) ^((k+1)2^n ) [y]dy=Σ_(j=0) ^(2^n −1) ∫_(2^n k+j) ^(2^n k+1+j) [y]dy  =Σ_(j=0) ^(2^n −1) 2^n k+jdy  =2^(2n) k+2^(n−1) (2^n −1)=  18^m I_m =Σ_k Σ_(n≥1) ((k(2^(2n) k+2^(n−1) (2^n −1))/6^n )  =Σ_k Σ_(n≥1) k^2 ((2/3))^n +(k/2).((2/3))^n −(k/2)((2/6))^n   =Σ_(k=0) ^(2^m −1) .(2k^2 +(3/4)k)=(((2^m −1)(2^m )(2^(m+1) −1))/3)+(3/4)2^(m−1) (2^m −1)  I_m =((2^(3m+1) −3.2^(2m) +2^m )/(3.18^m ))+((3.2^(2m−1) −3.2^m )/(4.18^m ))  I=Σ_(m≥1) (2/3).((2/3))^(2m) −((2/9))^m +(1/3).(1/9^m )+(3/8).((2/9))^m −(3/4).((1/9))^m   easy from here   Σ_(n≥1) a^n =(a/(1−a)),∀∣a∣<1

2mx=tIm=12m02m[t]32mnm+1[2nmt]3nm18mIm=02m[t]n1[2nt]3ndt=2m1k=0kk+1k.n1[2nt]3ndt,2nt=y=kn2nk(k+1)2nk6n[y]dy=18mIm2nk(k+1)2n[y]dy=2n1j=02nk+j2nk+1+j[y]dy=2n1j=02nk+jdy=22nk+2n1(2n1)=18mIm=kn1k(22nk+2n1(2n1)6n=kn1k2(23)n+k2.(23)nk2(26)n=2m1k=0.(2k2+34k)=(2m1)(2m)(2m+11)3+342m1(2m1)Im=23m+13.22m+2m3.18m+3.22m13.2m4.18mI=m123.(23)2m(29)m+13.19m+38.(29)m34.(19)measyfromheren1an=a1a,a∣<1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com