All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 197919 by universe last updated on 04/Oct/23
Im=∫01(⌊2mx⌋3m∑∞n=m+1⌊2nx⌋3n)dxthenfindthevalueofI=∑∞m=1Im=?
Answered by witcher3 last updated on 06/Oct/23
2mx=t⇔Im=12m∫02m[t]32m∑n⩾m+1[2n−mt]3n−m⇒18mIm=∫02m[t]∑n⩾1[2nt]3ndt=∑2m−1k=0∫kk+1k.∑n⩾1[2nt]3ndt,2nt=y=∑k∑n∫2nk(k+1)2nk6n[y]dy=18mIm∫2nk(k+1)2n[y]dy=∑2n−1j=0∫2nk+j2nk+1+j[y]dy=∑2n−1j=02nk+jdy=22nk+2n−1(2n−1)=18mIm=∑k∑n⩾1k(22nk+2n−1(2n−1)6n=∑k∑n⩾1k2(23)n+k2.(23)n−k2(26)n=∑2m−1k=0.(2k2+34k)=(2m−1)(2m)(2m+1−1)3+342m−1(2m−1)Im=23m+1−3.22m+2m3.18m+3.22m−1−3.2m4.18mI=∑m⩾123.(23)2m−(29)m+13.19m+38.(29)m−34.(19)measyfromhere∑n⩾1an=a1−a,∀∣a∣<1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com