Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 197998 by mathlove last updated on 07/Oct/23

lim_(x→0) ((x−ln(x+(√(1+x^2 ))))/x^3 )=?  with out L′Hospital rul

limx0xln(x+1+x2)x3=?withoutLHospitalrul

Answered by witcher3 last updated on 07/Oct/23

x=sh(t),t→0  =lim_(t→0) ((sh(t)−t)/(sh^3 (t)))  sh(t)−t=f(t)  f(0)=0  f′(0)=0  f′′(0)=0  f′′′(t)=ch(0)=1,,claime ∀t∈[0,1]  we have....  (t^3 /6)≤sh(t)−t≤(t^3 /6)+((sh(1))/(24))t^4 ...proof  sh(t)−t−(t^3 /6)=g(t)  g^((1)) =ch(t)−1−(t^2 /2)  g^((2)) (t)=sh(t)−t=∫_0 ^t ch(t)−1dt≥0  g^((1)) (0)=ch(o)−1≥0  g increase g(0)=0⇒g(t)≥0  sh(t)−t−(t^3 /6)−((sh(1))/(24))t^4   g′(t)=ch(t)−1−(t^2 /2)−((sh(1))/6)t^3   g′′(t)=sh(t)−t−((sh(1))/2)t^2   g′′′(t)=ch(t)−sh(1)t−1  g^((4)) =sh(t)−sh(1)≤0,t∈[0,1]  g^((3)) (0)=0⇒g^((3)) ≤0  g^((2)) (0)=0,g^((2)) ≤0  g^((1)) (0)=0⇒g′≤0  g(0)=0⇒g(t)≤0,∀t∈[0,1]  (t^3 /6)≤sh(t)−t≤(t^3 /6)+sh(1)(t^4 /(24))  ⇔ ∀t>0  (1/6)((t/(sh(t))))^3 ≤((sh(t)−t)/(sh^3 (t)))≤((t/(sh(t))))^3 ((1/6)+((sh(1))/(24))t)...(E)  ((sh(t))/t)→1⇔(t/(sh(t)))→1  (E)⇒lim_(t→0) ((sh(t)−t)/(sh^3 (t)))=(1/6)

x=sh(t),t0=limt0sh(t)tsh3(t)sh(t)t=f(t)f(0)=0f(0)=0f(0)=0f(t)=ch(0)=1,,claimet[0,1]wehave....t36sh(t)tt36+sh(1)24t4...proofsh(t)tt36=g(t)g(1)=ch(t)1t22g(2)(t)=sh(t)t=0tch(t)1dt0g(1)(0)=ch(o)10gincreaseg(0)=0g(t)0sh(t)tt36sh(1)24t4g(t)=ch(t)1t22sh(1)6t3g(t)=sh(t)tsh(1)2t2g(t)=ch(t)sh(1)t1g(4)=sh(t)sh(1)0,t[0,1]g(3)(0)=0g(3)0g(2)(0)=0,g(2)0g(1)(0)=0g0g(0)=0g(t)0,t[0,1]t36sh(t)tt36+sh(1)t424t>016(tsh(t))3sh(t)tsh3(t)(tsh(t))3(16+sh(1)24t)...(E)sh(t)t1tsh(t)1(E)limt0sh(t)tsh3(t)=16

Commented by universe last updated on 07/Oct/23

sir  what is sh ??

sirwhatissh??

Commented by witcher3 last updated on 07/Oct/23

sh(t)=((e^t −e^(−t) )/2)

sh(t)=etet2

Commented by Frix last updated on 07/Oct/23

sh x =sinh x

shx=sinhx

Commented by universe last updated on 07/Oct/23

thanks sir

thankssir

Answered by mr W last updated on 07/Oct/23

ln (x+(√(1+x^2 )))=sinh^(−1)  x=x−(x^3 /6)+((3x^5 )/(40))−o(x^5 )  lim_(x→0) ((x−ln(x+(√(1+x^2 ))))/x^3 )  =lim_(x→0) ((x−x+(x^3 /6)−((3x^5 )/(40))+o(x^5 ))/x^3 )  =lim_(x→0) ((1/6)−((3x^2 )/(40))+o(x^2 ))  =(1/6)

ln(x+1+x2)=sinh1x=xx36+3x540o(x5)limx0xln(x+1+x2)x3=limx0xx+x363x540+o(x5)x3=limx0(163x240+o(x2))=16

Commented by mathlove last updated on 08/Oct/23

tanks

tanks

Answered by MathematicalUser2357 last updated on 09/Oct/23

Without L′Ho^� pital′s rule,  I can use mean−limit rule  f(x)=((x−ln(x+(√(1+x^2 ))))/x^3 )  ((f(−ε)+f(ε))/2)=(1/6)

WithoutLHopital^srule,Icanusemeanlimitrulef(x)=xln(x+1+x2)x3f(ϵ)+f(ϵ)2=16

Terms of Service

Privacy Policy

Contact: info@tinkutara.com