Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 198018 by obia last updated on 07/Oct/23

Answered by a.lgnaoui last updated on 08/Oct/23

Z=(√3) +1+ i((√3) −1)    •1):  Z^2 =4+2(√3)  −(4−2(√3) )+2i((√3) +1)((√3) − 1)     =4(√3)  +4i  =4((√3) +i)     8(((√3)/2)+(1/2)i)   =8(cos (𝛑/6)+ isin (𝛑/6))  ⇒Module (Z^2 )=8       Argument=(𝛑/6)[2𝛑]  •2):  Module   de Z ese alors :  2(√2)       et    argument de Z=(𝛑/(12))+k𝛑  soit: Z=2(√2) (cos (𝛑/(12))+isin (𝛑/(12)))          Z^2 =8[(cos^2 (𝛑/(12))−sin^2 (𝛑/(12)))+i(2sin (𝛑/(12))cos (𝛑/(12)))  ⇒ { ((8(2cos^2 (𝛑/(12))−1)=((√3)/2))),((16sin (𝛑/(12))cos (π/(12))=(1/2))) :}  •3):  cos (𝛑/(12))   et sin (𝛑/(12)) sont deduites de:   ⇒ { ((cos (π/(12)) = ((√((√6) +16(√2)))/8))),((sin (𝛑/(12))=  (1/8)(√(64−((√6) +16(√2))) ))) :}  •4):Resolution de l equation:      ((√3)  +1)cos x+((√3) −1)sin x=(√2)         −  methode de tangente  cos x[((√3) +1)+((√3) −1)tan x=(√2)    ((√3) +1)+((√3) −1)tan x=((√2)/(cos x))    (1/(cos^2 x))=1+tan^2 x  ⇒  (1/(cos x))=(√(1+tan^2 x^2 ))  ⇒    ((√3) +1)+ ((√3) −1)  tan x=(√(2(1+tan^2 x)))   posins t=tan x  ((√3) +1)^2 +((√3) −1)^2 t^2 +4t=2t^2 +2                                        (2−2(√3)  )t^2 +4t +(2+2(√3) ) =0      t^2 −(((2+(√3) )t)/2)−2−(√3) =0       △=((4+3+4(√3))/4)+8+4(√3)           =((7+32+20(√3))/4)=((39+4(√3))/4)    x=((2+(√3))/4)±((√(39+4(√3)))/4)=((1/2)+((√3)/2))±((√(39+4(√3)))/4)   { ((t_1 =((2+(√3))/4)  −((√(39+4(√3)))/4))),((t_2 =((2+(√3))/4) +((√(39+4(√3)))/4))) :}  Calcul de x      tan x_1 =((2+(√3))/4)+((√(39+4(√3)))/4)=2,62727                                            x_1 ≈69  ,    t_2 =−0,7612          x_2 =−37°=

Z=3+1+i(31)1):Z2=4+23(423)+2i(3+1)(31)=43+4i=4(3+i)8(32+12i)=8(cosπ6+isinπ6)Module(Z2)=8Argument=π6[2π]2):ModuledeZesealors:22etargumentdeZ=π12+kπsoit:Z=22(cosπ12+isinπ12)Z2=8[(cos2π12sin2π12)+i(2sinπ12cosπ12){8(2cos2π121)=3216sinπ12cosπ12=123):cosπ12etsinπ12sontdeduitesde:{cosπ12=6+1628sinπ12=1864(6+162)4):Resolutiondelequation:(3+1)cosx+(31)sinx=2methodedetangentecosx[(3+1)+(31)tanx=2(3+1)+(31)tanx=2cosx1cos2x=1+tan2x1cosx=1+tan2x2(3+1)+(31)tanx=2(1+tan2x)posinst=tanx(3+1)2+(31)2t2+4t=2t2+2(223)t2+4t+(2+23)=0t2(2+3)t223=0=4+3+434+8+43=7+32+2034=39+434x=2+34±39+434=(12+32)±39+434{t1=2+3439+434t2=2+34+39+434Calculdextanx1=2+34+39+434=2,62727x169,t2=0,7612x2=37°=

Terms of Service

Privacy Policy

Contact: info@tinkutara.com