All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 198018 by obia last updated on 07/Oct/23
Answered by a.lgnaoui last updated on 08/Oct/23
Z=3+1+i(3−1)∙1):Z2=4+23−(4−23)+2i(3+1)(3−1)=43+4i=4(3+i)8(32+12i)=8(cosπ6+isinπ6)⇒Module(Z2)=8Argument=π6[2π]∙2):ModuledeZesealors:22etargumentdeZ=π12+kπsoit:Z=22(cosπ12+isinπ12)Z2=8[(cos2π12−sin2π12)+i(2sinπ12cosπ12)⇒{8(2cos2π12−1)=3216sinπ12cosπ12=12∙3):cosπ12etsinπ12sontdeduitesde:⇒{cosπ12=6+1628sinπ12=1864−(6+162)∙4):Resolutiondelequation:(3+1)cosx+(3−1)sinx=2−methodedetangentecosx[(3+1)+(3−1)tanx=2(3+1)+(3−1)tanx=2cosx1cos2x=1+tan2x⇒1cosx=1+tan2x2⇒(3+1)+(3−1)tanx=2(1+tan2x)posinst=tanx(3+1)2+(3−1)2t2+4t=2t2+2(2−23)t2+4t+(2+23)=0t2−(2+3)t2−2−3=0△=4+3+434+8+43=7+32+2034=39+434x=2+34±39+434=(12+32)±39+434{t1=2+34−39+434t2=2+34+39+434Calculdextanx1=2+34+39+434=2,62727x1≈69,t2=−0,7612x2=−37°=
Terms of Service
Privacy Policy
Contact: info@tinkutara.com