Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 198103 by mr W last updated on 10/Oct/23

solve for x, y ∈N  (√x)+(√y)=(√(2023))

solveforx,yNx+y=2023

Answered by Safojon last updated on 10/Oct/23

(√7)+16(√7)=(√(2023))  2(√7)+15(√7)=(√(2023))  3(√7)+14(√7)=(√(2023))  4(√7)+13(√7)=(√(2023))  5(√7)+12(√7)=(√(2023))  6(√7)+11(√7)=(√(2023))  7(√7)+10(√7)=(√(2023))  8(√7)+9(√7)=(√(2023))

7+167=202327+157=202337+147=202347+137=202357+127=202367+117=202377+107=202387+97=2023

Commented by mr W last updated on 10/Oct/23

��

Answered by witcher3 last updated on 10/Oct/23

x+y=2023−2(√(xy))  (√(xy))∈N  (√(ab))=n⇒ab=n^2   d=gcd(a,b)⇒a′b′=c^2 ,a′∧b′=1  c=Π_(i=1) ^r p_i ^a_i  ,c^2 =Π_(i=1) ^n p_i ^(2a_i )   ⇒b′=t^2 ,a′=r^2   a=dr^2 ,b=dt^2   x=dr^2 ...x>y  y=dt^2   ⇒d(r^2 +t^2 +2rt)=2023  d(r+t)^2 =2023=7.17^2   ⇒d=7  r−t=17,r>t  r−t=17⇒(r,t)∈S={(17,0);)(16,1);(15,2);(14,3);(13,4)  (12,5);(11,6);(10,7);(9,8)}  (x,y)=(7r^2 ,7t^2 )(r,t)∈S^2  withe permutation (y,x)

x+y=20232xyxyNab=nab=n2d=gcd(a,b)ab=c2,ab=1c=ri=1piai,c2=ni=1pi2aib=t2,a=r2a=dr2,b=dt2x=dr2...x>yy=dt2d(r2+t2+2rt)=2023d(r+t)2=2023=7.172d=7rt=17,r>trt=17(r,t)S={(17,0);)(16,1);(15,2);(14,3);(13,4)(12,5);(11,6);(10,7);(9,8)}(x,y)=(7r2,7t2)(r,t)S2withepermutation(y,x)

Commented by mr W last updated on 10/Oct/23

��

Answered by universe last updated on 10/Oct/23

      (√x)+(√y) =(√(2023))     ((√y))^2  = ((√(2023))−(√x))^2      y = 2023 −2(√(2023x)) +x      (√(2023x))    =   integer       (√(289×7x))  =   17(√(7x))_(integer)                    x  =  7m^2     ;   m∈z   similarly    y   =  7n^2     ;    n ∈z         mn∈z       (√(7m^2 )) + (√(7n^2 )) = 17(√7)       m+n = 17   m,n = {(0,17),(1,16),(2,15) ......}  so  (x,y) = {(0,2023),(7,1792)....}

x+y=2023(y)2=(2023x)2y=202322023x+x2023x=integer289×7x=177xintegerx=7m2;mzsimilarlyy=7n2;nzmnz7m2+7n2=177m+n=17m,n={(0,17),(1,16),(2,15)......}so(x,y)={(0,2023),(7,1792)....}

Commented by mr W last updated on 10/Oct/23

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com