Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 198123 by a.lgnaoui last updated on 10/Oct/23

Determiner  lim_(x→3)  ((x−3)/(^3 (√(x+5)) −2))

Determinerlimx3x33x+52

Answered by Mathspace last updated on 10/Oct/23

a^3 −b^3 =(a−b)(a^2 +ab+b^2 ) ⇒  a−b=(^3 (√a)−^3 (√b))((^3 (√a))^2 +^3 (√(ab))+(^3 (√b))^2 ) ⇒  (^3 (√(x+5)))−(^3 (√8))  =((x+5−8)/((x+5)^(2/3) +(8(x+5))^(1/3) +8^(2/3) ))  ⇒lim_(x→3) f(x)  =lim_(x→3) ((x−3)/((x−3)/((x+5)^(2/3) +2(x+5)^(1/3) +4)))  =lim_(x→3)  (x+5)^(2/3) +2(x+5)^(1/3) +4  =8^(2/3) +2×8^(1/3) +4  =4+4+4=12

a3b3=(ab)(a2+ab+b2)ab=(3a3b)((3a)2+3ab+(3b)2)(3x+5)(38)=x+58(x+5)23+(8(x+5))13+823limx3f(x)=limx3x3x3(x+5)23+2(x+5)13+4=limx3(x+5)23+2(x+5)13+4=823+2×813+4=4+4+4=12

Commented by a.lgnaoui last updated on 10/Oct/23

exact

exact

Answered by MM42 last updated on 10/Oct/23

((x+5))^(1/3) −2=u⇒x+5=(u+2)^3 ⇒x=(u+2)^3 −5  ⇒lim_(u→0)  (((u+2)^3 −8)/u)=lim_(u→0)  ((u(u^2 +6u+12))/u)=12 ✓

x+532=ux+5=(u+2)3x=(u+2)35limu0(u+2)38u=limu0u(u2+6u+12)u=12

Answered by cortano12 last updated on 11/Oct/23

    Y3

Y3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com