Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 198124 by stevoh last updated on 10/Oct/23

solve for x log100+log(2+x)=10

solveforxlog100+log(2+x)=10

Answered by a.lgnaoui last updated on 10/Oct/23

 xlog100+log(2+x)=10        x=10−log(2+x)     log100=2    x=((10−log(2+x))/2)  (x+2)=5−((log(2+x))/2)+2   (log100=2)  x+2=z      z=7+−((log z)/2)     ((2z+logz)/2)=7   ⇒  log2z=14+log2−2z    log2z=14+log2−2z      par fonction Wolfram Alpha     log2z  en fonction de 2z          z=6,59053952      ⇒x=4,59053952

xlog100+log(2+x)=10x=10log(2+x)log100=2x=10log(2+x)2(x+2)=5log(2+x)2+2(log100=2)x+2=zz=7+logz22z+logz2=7log2z=14+log22zlog2z=14+log22zparfonctionWolframAlphalog2zenfonctionde2zz=6,59053952x=4,59053952

Answered by Frix last updated on 11/Oct/23

b^x =ax+c ⇒ x=−(c/a)−(1/(ln b))W (−((ln b)/(b^(c/a) a)))    xlog 100 +log (x+2) =10    If log x =ln x  100^x (x+2)=e^(10)   ((1/(100)))^x =e^(−10) x+2e^(−10)   x=−2+(1/(2ln 10))W (20000e^(10) ln 10)  x≈1.87721260171    If log x =log_(10)  x  100^x (x+2)=10^(10)   ((1/(100)))^x =10^(−10) x+2×10^(−10)   x=−2+(1/(2ln 10))W (2×10^(14) ln 10)  x≈4.59053951583

bx=ax+cx=ca1lnbW(lnbbc/aa)xlog100+log(x+2)=10Iflogx=lnx100x(x+2)=e10(1100)x=e10x+2e10x=2+12ln10W(20000e10ln10)x1.87721260171Iflogx=log10x100x(x+2)=1010(1100)x=1010x+2×1010x=2+12ln10W(2×1014ln10)x4.59053951583

Terms of Service

Privacy Policy

Contact: info@tinkutara.com