Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 198151 by sonukgindia last updated on 11/Oct/23

Answered by Mathspace last updated on 12/Oct/23

I=∫_0 ^∞  ((zlnz)/(1+z^3 ))dz    (z=t^(1/3) )  =(1/3)∫_0 ^∞   ((t^(1/3) lnt)/(1+t)).(1/3)t^((1/3)−1) dt  ⇒9I=∫_0 ^∞ ((t^((2/3)−1) lnt)/(1+t))dt  let J_a =∫_0 ^∞  (t^(a−1) /(1+t))dt  we have J^, a=∫_0 ^∞ ((t^(a−1) lnt)/(1+t))dt  and J^′ ((2/3))=9I ⇒I=(1/9)J^′ ((2/3))  J_a =(π/(sin(πa))) ⇒  J_a ^′ =−π^2  ((cos(πa))/(sin^2 (πa))) and  J^′ ((2/3))=−π^2 ((cos(((2π)/3)))/(sin^2 (((2π)/3))))  =−π^2 .(((−(1/2)))/((√3)/2))=(π^2 /2).(2/( (√3)))=(π^2 /( (√3))) ⇒  I=(π^2 /(9(√3)))=((π^2 (√3))/(27))

I=0zlnz1+z3dz(z=t13)=130t13lnt1+t.13t131dt9I=0t231lnt1+tdtletJa=0ta11+tdtwehaveJ,a=0ta1lnt1+tdtandJ(23)=9II=19J(23)Ja=πsin(πa)Ja=π2cos(πa)sin2(πa)andJ(23)=π2cos(2π3)sin2(2π3)=π2.(12)32=π22.23=π23I=π293=π2327

Terms of Service

Privacy Policy

Contact: info@tinkutara.com