All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 198152 by universe last updated on 11/Oct/23
an+2=an×an+1∀n⩾1,n∈Nandherea1=αanda2=βthenprovethatlimn→∞an+2=(α×β2)1/3
Answered by mr W last updated on 12/Oct/23
letbn=lnanan+2=an+1×anlnan+2=lnan+1+lnan22lnan+2−lnan+1−lnan=0⇒2bn+2−bn+1−bn=0(recurrencerelation)2p2−p−1=0(characteristicequation)(2p+1)(p−1)=0⇒p=1,−12⇒bn=A+B(−12)nb1=A+B(−12)=lna1=lnα...(i)b2=A+B(−12)2=lna2=lnβ...(ii)(ii)−(i):3B4=lnβ−lnα⇒B=43(lnβα)=ln(βα)43⇒A=B2+lnα=23(lnβα)+lnα=ln(αβ2)13⇒bn=ln(αβ2)13+(−12)nln(βα)43⇒bn=ln[(αβ2)13(βα)43(−12)n]=lnan⇒an=(αβ2)13(βα)43(−12)n⇒limn→∞an=(αβ2)13✓
Commented by universe last updated on 12/Oct/23
thankssir
Answered by Frix last updated on 12/Oct/23
an+2=an+1anan=eC1(−12)n+C2a1=α⇔e−C12+C2=α⇔−C12+C2=lnαa2=β⇔eC14+C2=β⇔C14+C2=lnβ⇒C1=43lnβα∧C2=13lnαβ2⇒an=α13(1−(−2)2−n)β23(1+(−2)1−n)limn→∞an=α13(1±0)β23(1∓0)=(αβ2)13
Terms of Service
Privacy Policy
Contact: info@tinkutara.com