Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 198152 by universe last updated on 11/Oct/23

    a_(n+2)  =   (√(a_n ×a_(n+1) ))   ∀ n≥1 , n ∈ N   and here  a_(1 ) = α  and a_2 = β  then     prove that  lim_(n→∞)  a_(n+2)    =  (α×β^2 )^(1/3)

an+2=an×an+1n1,nNandherea1=αanda2=βthenprovethatlimnan+2=(α×β2)1/3

Answered by mr W last updated on 12/Oct/23

let b_n =ln a_n   a_(n+2) =(√(a_(n+1) ×a_n ))  ln a_(n+2) =((ln a_(n+1) +ln a_n )/2)  2 ln a_(n+2) −ln a_(n+1) −ln a_n =0  ⇒2b_(n+2) −b_(n+1) −b_n =0   (recurrence relation)  2p^2 −p−1=0    (characteristic equation)  (2p+1)(p−1)=0  ⇒p=1, −(1/2)  ⇒b_n =A+B(−(1/2))^n   b_1 =A+B(−(1/2))=ln a_1 =ln α   ...(i)  b_2 =A+B(−(1/2))^2 =ln a_2 =ln β   ...(ii)  (ii)−(i):  ((3B)/4)=ln β−ln α  ⇒B=(4/3)(ln (β/α))=ln ((β/α))^(4/3)   ⇒A=(B/2)+ln α=(2/3)(ln (β/α))+ln α=ln (αβ^2 )^(1/3)   ⇒b_n =ln (αβ^2 )^(1/3) +(−(1/2))^n ln ((β/α))^(4/3)   ⇒b_n =ln [(αβ^2 )^(1/3) ((β/α))^((4/3)(−(1/2))^n ) ]=ln a_n   ⇒a_n = (αβ^2 )^(1/3) ((β/α))^((4/3)(−(1/2))^n )   ⇒lim_(n→∞) a_n =(αβ^2 )^(1/3)  ✓

letbn=lnanan+2=an+1×anlnan+2=lnan+1+lnan22lnan+2lnan+1lnan=02bn+2bn+1bn=0(recurrencerelation)2p2p1=0(characteristicequation)(2p+1)(p1)=0p=1,12bn=A+B(12)nb1=A+B(12)=lna1=lnα...(i)b2=A+B(12)2=lna2=lnβ...(ii)(ii)(i):3B4=lnβlnαB=43(lnβα)=ln(βα)43A=B2+lnα=23(lnβα)+lnα=ln(αβ2)13bn=ln(αβ2)13+(12)nln(βα)43bn=ln[(αβ2)13(βα)43(12)n]=lnanan=(αβ2)13(βα)43(12)nlimnan=(αβ2)13

Commented by universe last updated on 12/Oct/23

  thanks sir

thankssir

Answered by Frix last updated on 12/Oct/23

a_(n+2) =(√(a_(n+1) a_n ))  a_n =e^(C_1 (−(1/2))^n +C_2 )   a_1 =α ⇔ e^(−(C_1 /2)+C_2 ) =α ⇔ −(C_1 /2)+C_2 =ln α  a_2 =β ⇔ e^((C_1 /4)+C_2 ) =β ⇔ (C_1 /4)+C_2 =ln β  ⇒  C_1 =(4/3)ln (β/α) ∧C_2 =(1/3)ln αβ^2   ⇒  a_n =α^((1/3)(1−(−2)^(2−n) )) β^((2/3)(1+(−2)^(1−n) ))   lim_(n→∞)  a_n  =α^((1/3)(1±0)) β^((2/3)(1∓0)) =(αβ^2 )^(1/3)

an+2=an+1anan=eC1(12)n+C2a1=αeC12+C2=αC12+C2=lnαa2=βeC14+C2=βC14+C2=lnβC1=43lnβαC2=13lnαβ2an=α13(1(2)2n)β23(1+(2)1n)limnan=α13(1±0)β23(10)=(αβ2)13

Terms of Service

Privacy Policy

Contact: info@tinkutara.com