Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 198166 by mr W last updated on 12/Oct/23

if f(x)=x^2 +bx+c  f(f(1))=f(f(2))=0 and f(1)≠f(2)  find f(0)=?

iff(x)=x2+bx+cf(f(1))=f(f(2))=0andf(1)f(2)findf(0)=?

Answered by mr W last updated on 12/Oct/23

f(1)=1^2 +b×1+c=b+c+1  f(2)=2^2 +b×2+c=2b+c+4  f(1) and f(2) are the roots of f(x)=0.  f(1)+f(2)=−b  ⇒b+c+1+2b+c+4=−b  ⇒b=−((2c+5)/4)  f(1)f(2)=c  ⇒(b+c+1)(2b+c+4)=c  ⇒(−((2c+5)/4)+c+1)(−((2c+5)/2)+c+4)=c  ⇒c=−(3/2)  f(0)=c=−(3/2) ✓

f(1)=12+b×1+c=b+c+1f(2)=22+b×2+c=2b+c+4f(1)andf(2)aretherootsoff(x)=0.f(1)+f(2)=bb+c+1+2b+c+4=bb=2c+54f(1)f(2)=c(b+c+1)(2b+c+4)=c(2c+54+c+1)(2c+52+c+4)=cc=32f(0)=c=32

Answered by Frix last updated on 12/Oct/23

f(x)=x^2 −(x/2)−(3/2)  ⇒  f(0)=−(3/2)    [Solving this system for a, b, c, d:  f(1)=c∧f(2)=d∧f(c)=0∧f(d)=0]

f(x)=x2x232f(0)=32[Solvingthissystemfora,b,c,d:f(1)=cf(2)=df(c)=0f(d)=0]

Commented by deleteduser1 last updated on 12/Oct/23

For f(x)=x^2 −3x+3+_− i;  f(1)+f(2)=3=−b;(since f(1) and f(2) are zeros)  f(1)+f(2) will not be real(=3)

Forf(x)=x23x+3+i;f(1)+f(2)=3=b;(sincef(1)andf(2)arezeros)f(1)+f(2)willnotbereal(=3)

Commented by Frix last updated on 12/Oct/23

Thank you, I corrected.

Thankyou,Icorrected.

Answered by deleteduser1 last updated on 12/Oct/23

f(f(1))=f(1+b+c)  =1+2b^2 +c^2 +3b+3c+3bc=0  f(1)f(2)=c⇒(1+b+c)(4+2b+c)=c  ⇒4+6b+2b^2 +4c+3bc+c^2 =0⇒  (1+2b^2 +c^2 +3b+3c+3bc)+3+3b+c=0⇒3b+c=−3  ⇒f(f(2))=f(4+2b+c)=f(1−b)  f(1)+f(2)=−b⇒1+b+c+1−b=2+c=−b  ⇒c+b=−2⇒b=−(1/2)⇒c=−(3/2)  f(x)=x^2 −(1/2)x−(3/2)⇒f(0)=c=−(3/2)

f(f(1))=f(1+b+c)=1+2b2+c2+3b+3c+3bc=0f(1)f(2)=c(1+b+c)(4+2b+c)=c4+6b+2b2+4c+3bc+c2=0(1+2b2+c2+3b+3c+3bc)+3+3b+c=03b+c=3f(f(2))=f(4+2b+c)=f(1b)f(1)+f(2)=b1+b+c+1b=2+c=bc+b=2b=12c=32f(x)=x212x32f(0)=c=32

Terms of Service

Privacy Policy

Contact: info@tinkutara.com