Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 198178 by universe last updated on 13/Oct/23

f(xf(y)+x)=xy+f(x)  f:R→R  f(x)=?

f(xf(y)+x)=xy+f(x)f:RRf(x)=?

Answered by Rasheed.Sindhi last updated on 13/Oct/23

Let f(x)=ax+b  f(xf(y)+x)=xy+f(x)  ⇒a(xf(y)+x)+b=xy+ax+b  ⇒ax(ay+b)+ax=xy+ax  ⇒ax(ay+b)=xy  y→x  ⇒ax(ax+b)=x^2         a^2 x^2 +bx=x^2       a^2 =1∧ b=0       a=±1 ∧ b=0  f(x)=ax+b=(±1)x+0   determinant (( determinant (((f(x)=x   ∣   f(x)=−x)))))  Verification:  (1) f(x)=x  f(xf(y)+x)=xy+f(x)  xf(y)+x=xy+f(x)  ⇒xy+x=xy+x (✓)  (2) f(x)=−x  f(xf(y)+x)=xy+f(x)  ⇒−xf(y)−x=xy−x  ⇒−xf(y)−x=xy−x  ⇒−x(−y)−x=xy−x  ⇒xy−x=xy−x (✓)

Letf(x)=ax+bf(xf(y)+x)=xy+f(x)a(xf(y)+x)+b=xy+ax+bax(ay+b)+ax=xy+axax(ay+b)=xyyxax(ax+b)=x2a2x2+bx=x2a2=1b=0a=±1b=0f(x)=ax+b=(±1)x+0f(x)=xf(x)=xVerification:(1)f(x)=xf(xf(y)+x)=xy+f(x)xf(y)+x=xy+f(x)xy+x=xy+x()(2)f(x)=xf(xf(y)+x)=xy+f(x)xf(y)x=xyxxf(y)x=xyxx(y)x=xyxxyx=xyx()

Commented by mr W last updated on 13/Oct/23

fine!  but how is your argument that f(x) is  a linear function?

fine!buthowisyourargumentthatf(x)isalinearfunction?

Commented by Rasheed.Sindhi last updated on 13/Oct/23

sir, I′ve no argument! Even about     the function to be polynomial! But there′s   possibility of being linear.

sir,Ivenoargument!Evenaboutthefunctiontobepolynomial!Buttherespossibilityofbeinglinear.

Answered by witcher3 last updated on 13/Oct/23

let b∈R ∃ t∈R∣f(t)=b.....?  (x,y)=(1,y)⇒f(f(y)+1)=y+f(1)  y=b−f(1)  ⇒f(f(b−f(1)+1)=b,t=f(b−f(1))+1  f surjective  if f(a)=f(b)⇒(a=b)...?  (x,y)=(1,y)  f(f(y)+1)=y+f(1)..y=a y=b⇒a=b  ⇒ f is injective    so f bijective  f(f(y)+1)=y+f(1) for y=0⇒f(f(0)+1)=f(1)  withe injectivity⇒f(0)+1=1⇒f(0)=0  ∀t∈R−{0}⇔f(t)≠0 by bijection“  (x,y)=(x,y^∗ ),suche  f(y^∗ )=−1.y^∗  existe f surjective  ⇔f(x.−1+x)=xy^∗ +f(x)=f(0)=0  f(x)=−xy^∗   f is linear    f(x)=ax solution⇒(x,y)=(x,x)  f(ax^2 +x)=a^2 x^2 +ax=x^2 +ax⇒a^2 =1  a∈{−1,1}  ∀(x,y)∈R^2 ∣f(xf(y)+x)=xy+f(x)⇒f∈{f(x)=x,f(x)=−x}

letbRtRf(t)=b.....?(x,y)=(1,y)f(f(y)+1)=y+f(1)y=bf(1)f(f(bf(1)+1)=b,t=f(bf(1))+1fsurjectiveiff(a)=f(b)(a=b)...?(x,y)=(1,y)f(f(y)+1)=y+f(1)..y=ay=ba=bfisinjectivesofbijectivef(f(y)+1)=y+f(1)fory=0f(f(0)+1)=f(1)witheinjectivityf(0)+1=1f(0)=0tR{0}f(t)0bybijection(x,y)=(x,y),suchef(y)=1.yexistefsurjectivef(x.1+x)=xy+f(x)=f(0)=0f(x)=xyfislinearf(x)=axsolution(x,y)=(x,x)f(ax2+x)=a2x2+ax=x2+axa2=1a{1,1}(x,y)R2f(xf(y)+x)=xy+f(x)f{f(x)=x,f(x)=x}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com