Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 1988 by Rasheed Soomro last updated on 28/Oct/15

x^2 = ((f(x)+f(−x))/2)  f(x)=?

$${x}^{\mathrm{2}} =\:\frac{{f}\left({x}\right)+{f}\left(−{x}\right)}{\mathrm{2}} \\ $$$${f}\left({x}\right)=? \\ $$

Answered by 123456 last updated on 28/Oct/15

supossing that f is poly  f(x)=Σ_(i=0) ^n a_i x^i   f(−x)=Σ_(i=0) ^n a_i (−1)^i x^i   x^2 =((f(x)+f(−x))/2)  f(x)+f(−x)=2x^2   Σ_(i=0) ^n a_i x^i +Σ_(i=0) ^n a_i (−1)^i x^i =2x^2    (n≥2)  Σ_(i=0) ^n a_i [1+(−1)^i ]x^i =2x^2   i≠2⇒a_i [1+(−1)^i ]=0⇒a_i =0∨i≡1(mod 2)  i=2⇒2a_2 =2⇒a_2 =1  so  f(x)=Σ_(i=0) ^n a_i x^i ,a_i = { ((∀a_i ,i≡1(mod 2))),((a_i =0,i≡0(mod 2)∨i≠2)),((a_2 =1)) :}  −−−−−−−−−  f(x)=a_1 x+x^2 +a_3 x^3 +a_5 x^5 +∙∙∙  f(−x)=−a_1 x+x^2 −a_3 x^3 −a_5 x^5 −∙∙∙  f(x)+f(−x)=2x^2   ((f(x)+f(−x))/2)=x^2

$$\mathrm{supossing}\:\mathrm{that}\:{f}\:\mathrm{is}\:\mathrm{poly} \\ $$$${f}\left({x}\right)=\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{i}} {x}^{{i}} \\ $$$${f}\left(−{x}\right)=\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{i}} \left(−\mathrm{1}\right)^{{i}} {x}^{{i}} \\ $$$${x}^{\mathrm{2}} =\frac{{f}\left({x}\right)+{f}\left(−{x}\right)}{\mathrm{2}} \\ $$$${f}\left({x}\right)+{f}\left(−{x}\right)=\mathrm{2}{x}^{\mathrm{2}} \\ $$$$\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{i}} {x}^{{i}} +\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{i}} \left(−\mathrm{1}\right)^{{i}} {x}^{{i}} =\mathrm{2}{x}^{\mathrm{2}} \:\:\:\left({n}\geqslant\mathrm{2}\right) \\ $$$$\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{i}} \left[\mathrm{1}+\left(−\mathrm{1}\right)^{{i}} \right]{x}^{{i}} =\mathrm{2}{x}^{\mathrm{2}} \\ $$$${i}\neq\mathrm{2}\Rightarrow{a}_{{i}} \left[\mathrm{1}+\left(−\mathrm{1}\right)^{{i}} \right]=\mathrm{0}\Rightarrow{a}_{{i}} =\mathrm{0}\vee{i}\equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{2}\right) \\ $$$${i}=\mathrm{2}\Rightarrow\mathrm{2}{a}_{\mathrm{2}} =\mathrm{2}\Rightarrow{a}_{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{so} \\ $$$${f}\left({x}\right)=\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{i}} {x}^{{i}} ,{a}_{{i}} =\begin{cases}{\forall{a}_{{i}} ,{i}\equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{2}\right)}\\{{a}_{{i}} =\mathrm{0},{i}\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{2}\right)\vee{i}\neq\mathrm{2}}\\{{a}_{\mathrm{2}} =\mathrm{1}}\end{cases} \\ $$$$−−−−−−−−− \\ $$$${f}\left({x}\right)={a}_{\mathrm{1}} {x}+{x}^{\mathrm{2}} +{a}_{\mathrm{3}} {x}^{\mathrm{3}} +{a}_{\mathrm{5}} {x}^{\mathrm{5}} +\centerdot\centerdot\centerdot \\ $$$${f}\left(−{x}\right)=−{a}_{\mathrm{1}} {x}+{x}^{\mathrm{2}} −{a}_{\mathrm{3}} {x}^{\mathrm{3}} −{a}_{\mathrm{5}} {x}^{\mathrm{5}} −\centerdot\centerdot\centerdot \\ $$$${f}\left({x}\right)+{f}\left(−{x}\right)=\mathrm{2}{x}^{\mathrm{2}} \\ $$$$\frac{{f}\left({x}\right)+{f}\left(−{x}\right)}{\mathrm{2}}={x}^{\mathrm{2}} \\ $$

Answered by prakash jain last updated on 28/Oct/15

Let g(x) be any odd function.  g(x)=−g(−x)  f(x)=x^2 +g(x)  f(−x)=x^2 +g(−x)=x^2 −g(x)  ((f(x)+f(−x))/2)=x^2   examples  f(x)=x^2 +sin x  f(x)=x^2 +Σ_(i=0) ^n a_i x^(2i+1)

$$\mathrm{Let}\:{g}\left({x}\right)\:\mathrm{be}\:\mathrm{any}\:\mathrm{odd}\:\mathrm{function}. \\ $$$${g}\left({x}\right)=−{g}\left(−{x}\right) \\ $$$${f}\left({x}\right)={x}^{\mathrm{2}} +{g}\left({x}\right) \\ $$$${f}\left(−{x}\right)={x}^{\mathrm{2}} +{g}\left(−{x}\right)={x}^{\mathrm{2}} −{g}\left({x}\right) \\ $$$$\frac{{f}\left({x}\right)+{f}\left(−{x}\right)}{\mathrm{2}}={x}^{\mathrm{2}} \\ $$$${examples} \\ $$$${f}\left({x}\right)={x}^{\mathrm{2}} +\mathrm{sin}\:{x} \\ $$$${f}\left({x}\right)={x}^{\mathrm{2}} +\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{i}} {x}^{\mathrm{2}{i}+\mathrm{1}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com