Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 198862 by sonukgindia last updated on 25/Oct/23

Answered by Frix last updated on 25/Oct/23

 determinant ((a,b,c),(b,c,a),(c,a,b))=3abc−(a^3 +b^3 +c^3 )=  =(a+b+c)(ab+ac+bc−(a^2 +b^2 +c^2 ))=  =(a+b+c)(3(ab+ac+bc)−(a+b+c)^2 )=  =1×(3×0−1^2 )=−1         (x−a)(x−b)(x−c)=       =x^3 −(a+b+c)_(=1) x^2 +(ab+ac+bc)_(=0) x−abc_(=−2)

|abcbcacab|=3abc(a3+b3+c3)==(a+b+c)(ab+ac+bc(a2+b2+c2))==(a+b+c)(3(ab+ac+bc)(a+b+c)2)==1×(3×012)=1(xa)(xb)(xc)==x3(a+b+c)=1x2+(ab+ac+bc)=0xabc=2

Commented by Frix last updated on 25/Oct/23

This means  x^3 +px^2 +qx+r=0   determinant ((x_1 ,x_2 ,x_3 ),(x_2 ,x_3 ,x_1 ),(x_3 ,x_1 ,x_2 ))=p^3 −3pq

Thismeansx3+px2+qx+r=0|x1x2x3x2x3x1x3x1x2|=p33pq

Answered by cortano12 last updated on 25/Oct/23

 x^3 −x^2 +2 = 0   abc = −2 ; a+b+c = 1    ab+ac+bc = 0   det(A) = 3abc−(a^3 +b^3 +c^3 )   = −6−{(a+b+c)^2 −2(ab+ac+bc)−6}   = −6−{1−0−6 }= −1

x3x2+2=0abc=2;a+b+c=1ab+ac+bc=0det(A)=3abc(a3+b3+c3)=6{(a+b+c)22(ab+ac+bc)6}=6{106}=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com