Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 198913 by mr W last updated on 25/Oct/23

Commented by mr W last updated on 25/Oct/23

find θ in terms of a, b, c.

findθintermsofa,b,c.

Answered by ajfour last updated on 25/Oct/23

sin 2θ=((a^2 +b^2 +c^2 )/(2Rabc((1/a^2 )+(1/b^2 )+(1/c^2 ))))

sin2θ=a2+b2+c22Rabc(1a2+1b2+1c2)

Commented by mr W last updated on 26/Oct/23

i got tan θ=((4Δ)/(a^2 +b^2 +c^2 ))=((abc)/(R(a^2 +b^2 +c^2 )))  do they match?

igottanθ=4Δa2+b2+c2=abcR(a2+b2+c2)dotheymatch?

Answered by mr W last updated on 26/Oct/23

Commented by mr W last updated on 26/Oct/23

Δ=area of ΔABC  ((pc sin θ)/2)+((qa sin θ)/2)+((rb sin θ)/2)=Δ  ⇒(pc+qa+rb) sin θ=2Δ   ...(i)  q^2 =c^2 +p^2 −2pc cos θ  r^2 =a^2 +q^2 −2qa cos θ  p^2 =b^2 +r^2 −2rb cos θ  Σ: q^2 +r^2 +p^2 =c^2 +p^2 +a^2 +q^2 +b^2 +r^2 −2(pc+qa+rb)cos θ  ⇒(pc+qa+rb)cos θ=((a^2 +b^2 +c^2 )/2)   ...(ii)  (i)/(ii):  ⇒tan θ=((4Δ)/(a^2 +b^2 +c^2 ))  or  ⇒tan θ=((√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))/(a^2 +b^2 +c^2 ))  ■

Δ=areaofΔABCpcsinθ2+qasinθ2+rbsinθ2=Δ(pc+qa+rb)sinθ=2Δ...(i)q2=c2+p22pccosθr2=a2+q22qacosθp2=b2+r22rbcosθΣ:q2+r2+p2=c2+p2+a2+q2+b2+r22(pc+qa+rb)cosθ(pc+qa+rb)cosθ=a2+b2+c22...(ii)(i)/(ii):tanθ=4Δa2+b2+c2ortanθ=(a+b+c)(a+b+c)(ab+c)(a+bc)a2+b2+c2

Answered by ajfour last updated on 26/Oct/23

((sin (θ+α))/a)=((sin (θ+β))/b)=((sin (θ+γ))/c)=(1/(2R))  ((sin (θ+α))/b)=((sin θ)/p)=((sin α)/r)  from △ACO  ⇒  (1/b)((a/(2R)))=((sin θ)/p)          (1/c)((b/(2R)))=((sin θ)/q)         (1/a)((c/(2R)))=((sin θ)/r)      ......set (I)            2aqcos θ=a^2 +q^2 −r^2   2brcos θ=b^2 +r^2 −p^2   2cpcos θ=c^2 +p^2 −q^2   2cos θ(aq+br+cp)=a^2 +b^2 +c^2    ...(II)  from ..set(I)  p=(2Rsin θ)(b/a)  q=(2Rsin θ)(c/b)  r=(2Rsin θ)(a/c)  Now from (II)  4R^2 (sin θcos θ)(((ca)/b)+((ab)/c)+((bc)/a))=a^2 +b^2 +c^2   (2abcRsin 2θ)((1/b^2 )+(1/c^2 )+(1/a^2 ))=a^2 +b^2 +c^2      sin 2θ=((a^2 +b^2 +c^2 )/(2abcR((1/a^2 )+(1/b^2 )+(1/c^2 ))))

sin(θ+α)a=sin(θ+β)b=sin(θ+γ)c=12Rsin(θ+α)b=sinθp=sinαrfromACO1b(a2R)=sinθp1c(b2R)=sinθq1a(c2R)=sinθr......set(I)2aqcosθ=a2+q2r22brcosθ=b2+r2p22cpcosθ=c2+p2q22cosθ(aq+br+cp)=a2+b2+c2...(II)from..set(I)p=(2Rsinθ)baq=(2Rsinθ)cbr=(2Rsinθ)acNowfrom(II)4R2(sinθcosθ)(cab+abc+bca)=a2+b2+c2(2abcRsin2θ)(1b2+1c2+1a2)=a2+b2+c2sin2θ=a2+b2+c22abcR(1a2+1b2+1c2)

Commented by mr W last updated on 26/Oct/23

nice solution sir!

nicesolutionsir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com