Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 199011 by necx122 last updated on 26/Oct/23

Sum of two irrational numbers is 1  less than their product, and 8 less than  their sum of squares. Find the larger  of the two numbers.

Sumoftwoirrationalnumbersis1lessthantheirproduct,and8lessthantheirsumofsquares.Findthelargerofthetwonumbers.

Commented by nikif99 last updated on 27/Oct/23

a+b=ab−1 ⇒b=((a+1)/(a−1)) (1)  ab−1=a^2 +b^2 −8 ⇒^((1)) a((a+1)/(a−1))=a^2 +(((a+1)/(a−1)))^2 −8 ⇒  ((a(a+1)(a−1))/((a−1)^2 ))−(((a−1)^2 )/((a−1)^2 ))=((a^2 (a−1)^2 )/((a−1)^2 ))+(((a+1)^2 )/((a−1)^2 ))−((8(a−1)^2 )/((a−1)^2 )) ⇒  a(a^2 −1)+(7−a^2 )(a−1)^2 −(a+1)^2 =0 ⇒  a^4 −3a^3 −5a^2 +17a−6=0 ⇒^(Peano)  a=2∨a=3, ∈N rejected  ((a^4 −3a^3 −5a^2 +17a−6)/((a−2)(a−3)))=a^2 +2a−1 ⇒a=−1+(√2)∨a=−1−(√2)  greatest a=−1+(√2)

a+b=ab1b=a+1a1(1)ab1=a2+b28(1)aa+1a1=a2+(a+1a1)28a(a+1)(a1)(a1)2(a1)2(a1)2=a2(a1)2(a1)2+(a+1)2(a1)28(a1)2(a1)2a(a21)+(7a2)(a1)2(a+1)2=0a43a35a2+17a6=0Peanoa=2a=3,Nrejecteda43a35a2+17a6(a2)(a3)=a2+2a1a=1+2a=12greatesta=1+2

Answered by Rasheed.Sindhi last updated on 27/Oct/23

a,b are two irrational numbers  a+b=ab−1  a+b=a^2 +b^2 −8  a+b=(a+b)^2 −2ab−8  (a+b)^2 −(a+b)−2ab−8=0  Let  a+b=t=ab−1⇒ab=t+1  t^2 −t−2(t+1)−8=0  t^2 −3t−10=0  (t−5)(t+2)=0  t=a+b=ab−1=5 , −2   { ((a+b=5⇒ab=6⇒(a,b)=(2,3) or (3,2)^★ )),((a+b=−2⇒ab=−1^(★★) )) :}  ^★ a+b=5 , ab=6 ,  specify   integer values for a,b   Hence rejected.     ^(★★)   a+b=−2,ab=−1:  b=−(1/a)  a−(1/a)=−2  a^2 +2a−1=0  a=((−2±(√(4+4)))/2)=−1±(√2)   b=−(1/a)=−(1/(−1±(√2)))×((−1∓(√2))/(−1∓(√2)))=−((−1∓(√2))/(1−2))=−1∓(√2)   (a,b)=(−1+(√(2 )) , −1−(√2) ),(−1−(√(2 )) , −1+(√2) )  Clearly,  Larger value=−1+(√2)

a,baretwoirrationalnumbersa+b=ab1a+b=a2+b28a+b=(a+b)22ab8(a+b)2(a+b)2ab8=0Leta+b=t=ab1ab=t+1t2t2(t+1)8=0t23t10=0(t5)(t+2)=0t=a+b=ab1=5,2{a+b=5ab=6(a,b)=(2,3)or(3,2)a+b=2ab=1a+b=5,ab=6,specifyintegervaluesfora,bHencerejected.a+b=2,ab=1:b=1aa1a=2a2+2a1=0a=2±4+42=1±2b=1a=11±2×1212=1212=12(a,b)=(1+2,12),(12,1+2)Clearly,Largervalue=1+2

Commented by Rasheed.Sindhi last updated on 27/Oct/23

necx sir please go through my  solution once more. I′ve corrected  it now!

necxsirpleasegothroughmysolutiononcemore.Ivecorrecteditnow!

Commented by necx122 last updated on 27/Oct/23

how is that possible sir? by merely  looking at both values it seems like  1+(√2) is greater

howisthatpossiblesir?bymerelylookingatbothvaluesitseemslike1+2isgreater

Commented by mr W last updated on 27/Oct/23

but the two numbers are −1±(√2). so  −1+(√2) is the larger one and  −1−(√2) is the smaller one.

butthetwonumbersare1±2.so1+2isthelargeroneand12isthesmallerone.

Commented by necx122 last updated on 27/Oct/23

Yes, it's clear now. I think the error was just an oversight. Thank you, sir.

Commented by Rasheed.Sindhi last updated on 27/Oct/23

You′re right mr W sir. I′ve found my   mistake and now corrected it!

YourerightmrWsir.Ivefoundmymistakeandnowcorrectedit!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com