Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 199046 by mr W last updated on 27/Oct/23

Commented by mr W last updated on 27/Oct/23

as Q198763, but the balls are not on  a table, but inside a large spherical  bowl with radius R.

asQ198763,buttheballsarenotonatable,butinsidealargesphericalbowlwithradiusR.

Answered by mr W last updated on 27/Oct/23

Commented by mr W last updated on 27/Oct/23

k=radius of the ball in the middle  AM=R−r  OM=R−k  OA=k+r  O′A=a=(r/(sin 22.5°))=(√(2(2+(√2))))r  (√((k+r)^2 −a^2 ))=(R−k)−(√((R−r)^2 −a^2 ))  R(R−r)−(R+r)k=(R−k)(√((R−r)^2 −a^2 ))  (4Rr+a^2 )k^2 −2R(2Rr−2r^2 +a^2 )k+R^2 a^2 =0  k=((R(2Rr−2r^2 +a^2 )±(√(R^2 (2Rr−2r^2 +a^2 )^2 −R^2 a^2 (4Rr+a^2 ))))/(4Rr+a^2 ))  ⇒(k/R)=((R+(1+(√2))r−(√(R^2 −2Rr−(1+(√2))^2 r^2 )))/(2R+(2+(√2))r))  or  with λ=(r/R)  ⇒(k/r)=((1+(1+(√2))λ−(√(1−2λ−(1+(√2))^2 λ^2 )))/(2λ+(2+(√2))λ^2 ))  lim_(λ→0) ((k/r))=((1+(√2)+1)/2)=1+((√2)/2)  this is the case when the balls are  on a table.

k=radiusoftheballinthemiddleAM=RrOM=RkOA=k+rOA=a=rsin22.5°=2(2+2)r(k+r)2a2=(Rk)(Rr)2a2R(Rr)(R+r)k=(Rk)(Rr)2a2(4Rr+a2)k22R(2Rr2r2+a2)k+R2a2=0k=R(2Rr2r2+a2)±R2(2Rr2r2+a2)2R2a2(4Rr+a2)4Rr+a2kR=R+(1+2)rR22Rr(1+2)2r22R+(2+2)rorwithλ=rRkr=1+(1+2)λ12λ(1+2)2λ22λ+(2+2)λ2limλ0(kr)=1+2+12=1+22thisisthecasewhentheballsareonatable.

Commented by mr W last updated on 27/Oct/23

Commented by mr W last updated on 27/Oct/23

Answered by ajfour last updated on 27/Oct/23

Commented by ajfour last updated on 28/Oct/23

p=(a/R)   ,  q=(b/R)   ,    a=kb  ⇒  p=kq  (R−a)sin θ(sin (π/8))=a  say sin (π/8)=λ and   since  a=kb  (1−kq)λsin θ=kq    .....(i)  {(R−b)−(R−a)cos θ}^2   +(R−a)^2 sin^2 θ=(a+b)^2   ⇒   (R−a)^2 +(R−b)^2 −2(R−b)(R−a)cos θ     =(a+b)^2   2R^2 −2R(a+b)−2ab       =2(R−b)(R−a)cos θ  or    ⇒  1−q(k+1)−kq^2         =(1−q)(1−kq)cos θ     .....(ii)  Now   (1−kq)^2 cos^2 θ+(1−kq)^2 sin^2 θ                =(1−kq)^2   ⇒  (({1−q(k+1)−kq^2 }^2 )/((1−q)^2 ))+((kq^2 )/λ^2 )=(1−kq)^2   ⇒ {(1−q)−kq(1+q)}^2 +((kq^2 (1−q)^2 )/λ^2 )         =(1+k^2 q^2 −2kq)(1−q)^2   ⇒   say  (1/λ)=μ  4q^2 k^2 −2(1−q)(1+q)k     +μ^2 q(1−q)^2 +2(1−q)^2 k=0  ⇒  4qk^2 −4(1−q)k+μ^2 (1−q)^2 =0  k=(((1−q)/(2q))){1±(√(1−(q/λ^2 )))}  (a/b)=(((R−b)/(2b))){1−(√(1−(b/(Rsin^2 (π/8)))))}  If  R→∞  (a/b)=lim_(R→∞) (((R−b)/(2b)))((b/(2Rsin^2 (π/8))))        =(1/(2(1−cos (π/4))))=(1/(2(1−(1/( (√2))))))      =(1/( (√2)((√2)−1)))=(((√2)+1)/( (√2)))=1+((√2)/2)≈ 1.707  but  a<b  ??????

p=aR,q=bR,a=kbp=kq(Ra)sinθ(sinπ8)=asaysinπ8=λandsincea=kb(1kq)λsinθ=kq.....(i){(Rb)(Ra)cosθ}2+(Ra)2sin2θ=(a+b)2(Ra)2+(Rb)22(Rb)(Ra)cosθ=(a+b)22R22R(a+b)2ab=2(Rb)(Ra)cosθor1q(k+1)kq2=(1q)(1kq)cosθ.....(ii)Now(1kq)2cos2θ+(1kq)2sin2θ=(1kq)2{1q(k+1)kq2}2(1q)2+kq2λ2=(1kq)2{(1q)kq(1+q)}2+kq2(1q)2λ2=(1+k2q22kq)(1q)2say1λ=μ4q2k22(1q)(1+q)k+μ2q(1q)2+2(1q)2k=04qk24(1q)k+μ2(1q)2=0k=(1q2q){1±1qλ2}ab=(Rb2b){11bRsin2π8}IfRab=limR(Rb2b)(b2Rsin2π8)=12(1cosπ4)=12(112)=12(21)=2+12=1+221.707buta<b??????

Commented by mr W last updated on 28/Oct/23

you want to find a from R, b.  how is to find b from R, a?

youwanttofindafromR,b.howistofindbfromR,a?

Commented by ajfour last updated on 28/Oct/23

I thought lets inquire with what  radius balls to surround with,   given the single blue ball inside a sphere..   (⌣^(• •) )

Ithoughtletsinquirewithwhatradiusballstosurroundwith,giventhesingleblueballinsideasphere..()

Commented by mr W last updated on 28/Oct/23

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com