Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 199092 by necx122 last updated on 27/Oct/23

Let the polynomial p(x)=5x^3 +3x^2 −10  have roots a,b and c. What is the value  of (a/(b+c))+(b/(c+a))+(c/(a+b))?

Letthepolynomialp(x)=5x3+3x210haverootsa,bandc.Whatisthevalueofab+c+bc+a+ca+b?

Answered by Rasheed.Sindhi last updated on 28/Oct/23

p(x)=5x^3 +3x^2 −10  a+b+c=−(3/5) , ab+bc+ca=0 , abc=2  a^2 +b^2 +c^2 =(a+b+c)^2 −2(ab+bc+ca)  a^2 +b^2 +c^2 =(−(3/5))^2 −2(0)=(9/(25))   (a/(b+c))+1+(b/(c+a))+1+(c/(a+b))+1−3  =((a+b+c)/(b+c))+((b+c+a)/(c+a))+((c+a+b)/(a+b))−3  =(a+b+c)((1/(b+c))+(1/(c+a))+(1/(a+b)))−3  =−(3/5)((1/(−(3/5)−a))+(1/(−(3/5)−b))+(1/(−(3/5)−c)))−3  =−(3/5)((5/(−3−5a))+(5/(−3−5b))+(5/(−3−5c)))−3  =3((1/(3+5a))+(1/(3+5b))+(1/(3+5c)))−3  =3((((3+5a)(3+5b)+(3+5b)(3+5c)+(3+5a)(3+5c))/((3+5a)(3+5b)(3+5c))))−3  =3(((9+15a+15b+25ab+9+15b+15c+25bc+9+15c+15a+25ca)/(27+45(a+b+c)+75(ab+bc+ca)+125abc)))−3  =3(((27+30(a+b+c)+25(ab+bc+ca))/(27+45(a+b+c)+75(ab+bc+ca)+125abc)))−3  =3(((27+30(−(3/5))+25(0))/(27+45(−(3/5))+75(0)+125(2))))−3  =3(((27−18)/(27−27+250)))−3=((27−750)/(250))=−((723)/(250))

p(x)=5x3+3x210a+b+c=35,ab+bc+ca=0,abc=2a2+b2+c2=(a+b+c)22(ab+bc+ca)a2+b2+c2=(35)22(0)=925ab+c+1+bc+a+1+ca+b+13=a+b+cb+c+b+c+ac+a+c+a+ba+b3=(a+b+c)(1b+c+1c+a+1a+b)3=35(135a+135b+135c)3=35(535a+535b+535c)3=3(13+5a+13+5b+13+5c)3=3((3+5a)(3+5b)+(3+5b)(3+5c)+(3+5a)(3+5c)(3+5a)(3+5b)(3+5c))3=3(9+15a+15b+25ab+9+15b+15c+25bc+9+15c+15a+25ca27+45(a+b+c)+75(ab+bc+ca)+125abc)3=3(27+30(a+b+c)+25(ab+bc+ca)27+45(a+b+c)+75(ab+bc+ca)+125abc)3=3(27+30(35)+25(0)27+45(35)+75(0)+125(2))3=3(27182727+250)3=27750250=723250

Commented by deleteduser1 last updated on 28/Oct/23

This method may not always work when b,c ∈C\R

Thismethodmaynotalwaysworkwhenb,cCR

Commented by Rasheed.Sindhi last updated on 28/Oct/23

You′re very right AST sir!  ThanX!

YoureveryrightASTsir!ThanX!

Commented by mr W last updated on 28/Oct/23

Rasheed sir:  i think your path is correct. but take  care in last step: abc=2 ≠10, then  you also get −((723)/(250)).

Rasheedsir:ithinkyourpathiscorrect.buttakecareinlaststep:abc=210,thenyoualsoget723250.

Commented by Rasheed.Sindhi last updated on 28/Oct/23

A lot of Thαnks sir!

AlotofThαnkssir!

Answered by deleteduser1 last updated on 28/Oct/23

Let a=a;b=x+yi,c=e+fi  a+b+c=((−3)/5)⇒f=−y(otherwise,sum won′t ∈R)  abc=2⇒a(x+yi)(e−yi)=2⇒e=x  ⇒c=x−yi⇒abc=a(x^2 +y^2 )=2;a+2x=((−3)/5);  ab+bc+ca=0⇒a(x+yi)+x^2 +y^2 +a(x−yi)=0  ⇒2ax+x^2 +y^2 =0⇒a(−2ax)=2⇒a^2 x=−1  (a/(b+c))+(b/(c+a))+(c/(a+b))=(a+b+c)((1/(b+c))+(1/(c+a))+(1/(a+b)))−3  =(a+2x)((1/(2x))+((2(x+a))/(x^2 +a^2 +2ax+y^2 )))−3=(((−3)/5))((1/(2x))+((2(x+a))/a^2 ))−3  =(((−3)/5))(((a^2 +4x^2 +4ax)/(2a^2 x)))−3=(((−3)/5))(((a+2x)^2 )/(2a^2 x))−3  =(((−3)/5))((((9/(25))))/((−2)/1))−3=((9/(−50))×((−3)/5))−3=((27)/(250))−3=−((723)/(250))

Leta=a;b=x+yi,c=e+fia+b+c=35f=y(otherwise,sumwontR)abc=2a(x+yi)(eyi)=2e=xc=xyiabc=a(x2+y2)=2;a+2x=35;ab+bc+ca=0a(x+yi)+x2+y2+a(xyi)=02ax+x2+y2=0a(2ax)=2a2x=1ab+c+bc+a+ca+b=(a+b+c)(1b+c+1c+a+1a+b)3=(a+2x)(12x+2(x+a)x2+a2+2ax+y2)3=(35)(12x+2(x+a)a2)3=(35)(a2+4x2+4ax2a2x)3=(35)(a+2x)22a2x3=(35)(925)213=(950×35)3=272503=723250

Answered by mr W last updated on 28/Oct/23

Method I  let s=a+b+c=−(3/5)  ab+bc+ca=0  abc=((10)/5)=2  (a/(b+c))+(b/(c+a))+(c/(a+b))  =(a/(s−a))+(b/(s−b))+(c/(s−c))  =(((a+b+c)s^2 −2(ab+bc+ca)s+3abc)/((s−a)(s−b)(s−c)))  =(((a+b+c)s^2 −2(ab+bc+ca)s+3abc)/(s^3 −(a+b+c)s^2 +(ab+bc+ca)s−abc))  =((s^3 −2(ab+bc+ca)s+3abc)/((ab+bc+ca)s−abc))  =((s^3 +3abc)/(−abc))  =−(s^3 /(abc))−3  =−(−(3/5))^3 ×(1/2)−3=−((723)/(250)) ✓

MethodIlets=a+b+c=35ab+bc+ca=0abc=105=2ab+c+bc+a+ca+b=asa+bsb+csc=(a+b+c)s22(ab+bc+ca)s+3abc(sa)(sb)(sc)=(a+b+c)s22(ab+bc+ca)s+3abcs3(a+b+c)s2+(ab+bc+ca)sabc=s32(ab+bc+ca)s+3abc(ab+bc+ca)sabc=s3+3abcabc=s3abc3=(35)3×123=723250

Commented by mr W last updated on 28/Oct/23

Method II  let s=a+b+c=−(3/5)  let u=(x/(s−x)), i.e. x=((su)/(u+1))  5(((su)/(u+1)))^3 +3(((su)/(u+1)))^2 −10=0  5(su)^3 +3(su)^2 (u+1)−10(u+1)^3 =0  (5s^3 +3s^2 −10)u^3 +3(s^2 −10)u^2 −30u−10=0    (a/(b+c))+(b/(c+a))+(c/(a+b))=(a/(s−a))+(b/(s−b))+(c/(s−c))  =(x_1 /(s−x_1 ))+(x_2 /(s−x_2 ))+(x_3 /(s−x_3 ))=u_1 +u_2 +u_3     =−((3(s^2 −10))/(5s^3 +3s^2 −10))=−((723)/(250)) ✓

MethodIIlets=a+b+c=35letu=xsx,i.e.x=suu+15(suu+1)3+3(suu+1)210=05(su)3+3(su)2(u+1)10(u+1)3=0(5s3+3s210)u3+3(s210)u230u10=0ab+c+bc+a+ca+b=asa+bsb+csc=x1sx1+x2sx2+x3sx3=u1+u2+u3=3(s210)5s3+3s210=723250

Commented by mr W last updated on 28/Oct/23

Method III  s=a+b+c=−(3/5)  ab+bc+ca=0  abc=((10)/5)=2  (a/(b+c))+(b/(c+a))+(c/(a+b))  =((a+b+c)/(b+c))+((a+b+c)/(c+a))+((a+b+c)/(a+b))−3  =s((1/(s−a))+(1/(s−b))+(1/(s−c)))−3  =s×((3s^2 −2(a+b+c)s+ab+bc+ca)/((s−a)(s−b)(s−c)))−3  =s×((3s^2 −2s^2 +ab+bc+ca)/(s^3 −(a+b+c)s^2 +(ab+bc+ca)s−abc))−3  =s×((s^2 +ab+bc+ca)/((ab+bc+ca)s−abc))−3  =(s^3 /(−abc))−3  =−(1/2)(−(3/5))^3 −3=−((723)/(250)) ✓

MethodIIIs=a+b+c=35ab+bc+ca=0abc=105=2ab+c+bc+a+ca+b=a+b+cb+c+a+b+cc+a+a+b+ca+b3=s(1sa+1sb+1sc)3=s×3s22(a+b+c)s+ab+bc+ca(sa)(sb)(sc)3=s×3s22s2+ab+bc+cas3(a+b+c)s2+(ab+bc+ca)sabc3=s×s2+ab+bc+ca(ab+bc+ca)sabc3=s3abc3=12(35)33=723250

Commented by Rasheed.Sindhi last updated on 28/Oct/23

Great sir!

Greatsir!

Commented by necx122 last updated on 28/Oct/23

This is one thing I love about this platform, the seriousness in giving us answers that are accurate and the time spent in offering this untamed service to us. Personally, I'm grateful sirs for this several methods; I understand them. @Rashes.Sindhi and @Mr. W

Answered by ajfour last updated on 28/Oct/23

a+b+c=−(3/5)=s  ab+bc+ca=0  abc=2  b+c=−((bc)/a)=−(2/a^2 )  Q=Σ((s−(b+c))/(b+c))  (Q+3)(−(5/3))=Σ(1/(b+c))  ((5Q)/3)+5=(1/2)Σa^2   ((5Q)/3)+5=(1/2){s^2 −2(ab+bc+ca)}    5((Q/3)+1)=(1/2)(s^2 −0)=(9/(50))  Q=3((9/(250))−1)=−((723)/(250))

a+b+c=35=sab+bc+ca=0abc=2b+c=bca=2a2Q=Σs(b+c)b+c(Q+3)(53)=Σ1b+c5Q3+5=12Σa25Q3+5=12{s22(ab+bc+ca)}5(Q3+1)=12(s20)=950Q=3(92501)=723250

Commented by necx122 last updated on 28/Oct/23

just when I was in awe of the amount of steps used in solving the question here is Mr. Ajfour with another mind blowing approach. I'm grateful sir. Thank you.

Answered by Frix last updated on 28/Oct/23

x^3 +px^2 +qx+r=0  (x_1 /(x_2 +x_3 ))+(x_2 /(x_1 +x_3 ))+(x_3 /(x_1 +x_2 ))=−2+((p^3 +r)/(pq−r))

x3+px2+qx+r=0x1x2+x3+x2x1+x3+x3x1+x2=2+p3+rpqr

Terms of Service

Privacy Policy

Contact: info@tinkutara.com