Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 19915 by ajfour last updated on 18/Aug/17

Commented by ajfour last updated on 18/Aug/17

Four equal spheres of radius r  are externally tangent to the three  others. Find the radius of a sphere  tangent to all four spheres and  containing them within it.

$${Four}\:{equal}\:{spheres}\:{of}\:{radius}\:{r} \\ $$$${are}\:{externally}\:{tangent}\:{to}\:{the}\:{three} \\ $$$${others}.\:{Find}\:{the}\:{radius}\:{of}\:{a}\:{sphere} \\ $$$${tangent}\:{to}\:{all}\:{four}\:{spheres}\:{and} \\ $$$${containing}\:{them}\:{within}\:{it}. \\ $$

Commented by ajfour last updated on 18/Aug/17

Commented by ajfour last updated on 18/Aug/17

 The centres of the four spheres   be A, B, C, D. They form a  regular tetrahedron.  Each edge of tetrahedron is then  equal to 2r.   O  being the centre of the tetra-  hedron,  OA=OB =x  (let)      and   BC=2r   BE=(√(BC^( 2) −CE^2 ))=(√(4r^2 −r^2 ))=r(√3)  The foot of perpendicular from  A to face BCD is at the centroid  of △BCD.  Hence   BF=(2/3)(BE)= (2/3)(r(√3))      =((2r)/(√3)) .  AF^(  2) =AB^2 −BF^( 2)   (x+y)^2 =4r^2 −((4r^2 )/3) =((8r^2 )/3)  ⇒     x+y =((2(√2)r)/(√3))  ⇒  y=((2(√6)r)/3)−x  Also  △OBF is right angled, so         x^2 =y^2 +BF^(  2)          x^2 =y^2 +((4r^2 )/3)         x^2 =(((2(√6)r)/3)−x)^2 +((4r^2 )/3)  ⇒  x^2 =((8r^2 )/3)+x^2 −((4(√6)rx)/3)+((4r^2 )/3)  ⇒     ((4(√6)rx)/3)=4r^2   or  x=((3r)/(√6)) =((r(√3))/(√2)) .  Radius of large sphere be R, then        R=x+r            =((r(√3))/(√2))+r              R= (r/2)(2+(√6)) .

$$\:{The}\:{centres}\:{of}\:{the}\:{four}\:{spheres} \\ $$$$\:{be}\:{A},\:{B},\:{C},\:{D}.\:{They}\:{form}\:{a} \\ $$$${regular}\:{tetrahedron}. \\ $$$${Each}\:{edge}\:{of}\:{tetrahedron}\:{is}\:{then} \\ $$$${equal}\:{to}\:\mathrm{2}\boldsymbol{{r}}. \\ $$$$\:{O}\:\:{being}\:{the}\:{centre}\:{of}\:{the}\:{tetra}- \\ $$$${hedron},\:\:{OA}={OB}\:={x}\:\:\left({let}\right) \\ $$$$\:\:\:\:{and}\:\:\:{BC}=\mathrm{2}{r} \\ $$$$\:{BE}=\sqrt{{BC}^{\:\mathrm{2}} −{CE}^{\mathrm{2}} }=\sqrt{\mathrm{4}{r}^{\mathrm{2}} −{r}^{\mathrm{2}} }={r}\sqrt{\mathrm{3}} \\ $$$${The}\:{foot}\:{of}\:{perpendicular}\:{from} \\ $$$${A}\:{to}\:{face}\:{BCD}\:{is}\:{at}\:{the}\:{centroid} \\ $$$${of}\:\bigtriangleup{BCD}. \\ $$$${Hence}\:\:\:{BF}=\frac{\mathrm{2}}{\mathrm{3}}\left({BE}\right)=\:\frac{\mathrm{2}}{\mathrm{3}}\left({r}\sqrt{\mathrm{3}}\right) \\ $$$$\:\:\:\:=\frac{\mathrm{2}{r}}{\sqrt{\mathrm{3}}}\:. \\ $$$${AF}^{\:\:\mathrm{2}} ={AB}^{\mathrm{2}} −{BF}^{\:\mathrm{2}} \\ $$$$\left({x}+{y}\right)^{\mathrm{2}} =\mathrm{4}{r}^{\mathrm{2}} −\frac{\mathrm{4}{r}^{\mathrm{2}} }{\mathrm{3}}\:=\frac{\mathrm{8}{r}^{\mathrm{2}} }{\mathrm{3}} \\ $$$$\Rightarrow\:\:\:\:\:{x}+{y}\:=\frac{\mathrm{2}\sqrt{\mathrm{2}}{r}}{\sqrt{\mathrm{3}}}\:\:\Rightarrow\:\:{y}=\frac{\mathrm{2}\sqrt{\mathrm{6}}{r}}{\mathrm{3}}−{x} \\ $$$${Also}\:\:\bigtriangleup{OBF}\:{is}\:{right}\:{angled},\:{so} \\ $$$$\:\:\:\:\:\:\:{x}^{\mathrm{2}} ={y}^{\mathrm{2}} +{BF}^{\:\:\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:{x}^{\mathrm{2}} ={y}^{\mathrm{2}} +\frac{\mathrm{4}{r}^{\mathrm{2}} }{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:{x}^{\mathrm{2}} =\left(\frac{\mathrm{2}\sqrt{\mathrm{6}}{r}}{\mathrm{3}}−{x}\right)^{\mathrm{2}} +\frac{\mathrm{4}{r}^{\mathrm{2}} }{\mathrm{3}} \\ $$$$\Rightarrow\:\:{x}^{\mathrm{2}} =\frac{\mathrm{8}{r}^{\mathrm{2}} }{\mathrm{3}}+{x}^{\mathrm{2}} −\frac{\mathrm{4}\sqrt{\mathrm{6}}{rx}}{\mathrm{3}}+\frac{\mathrm{4}{r}^{\mathrm{2}} }{\mathrm{3}} \\ $$$$\Rightarrow\:\:\:\:\:\frac{\mathrm{4}\sqrt{\mathrm{6}}{rx}}{\mathrm{3}}=\mathrm{4}{r}^{\mathrm{2}} \:\:{or}\:\:{x}=\frac{\mathrm{3}{r}}{\sqrt{\mathrm{6}}}\:=\frac{{r}\sqrt{\mathrm{3}}}{\sqrt{\mathrm{2}}}\:. \\ $$$${Radius}\:{of}\:{large}\:{sphere}\:{be}\:{R},\:{then} \\ $$$$\:\:\:\:\:\:{R}={x}+{r} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{{r}\sqrt{\mathrm{3}}}{\sqrt{\mathrm{2}}}+{r}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{R}=\:\frac{{r}}{\mathrm{2}}\left(\mathrm{2}+\sqrt{\mathrm{6}}\right)\:. \\ $$

Answered by 1kanika# last updated on 18/Aug/17

since the big sphere contains all four  sphere of radius r and aldo tangent   to all four spheres , so radius of big sphere

$$\mathrm{since}\:\mathrm{the}\:\mathrm{big}\:\mathrm{sphere}\:\mathrm{contains}\:\mathrm{all}\:\mathrm{four} \\ $$$$\mathrm{sphere}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{r}\:\mathrm{and}\:\mathrm{aldo}\:\mathrm{tangent}\: \\ $$$$\mathrm{to}\:\mathrm{all}\:\mathrm{four}\:\mathrm{spheres}\:,\:\mathrm{so}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{big}\:\mathrm{sphere} \\ $$

Answered by 1kanika# last updated on 18/Aug/17

is 2r .

$$\mathrm{is}\:\mathrm{2r}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com