Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 199547 by hardmath last updated on 05/Nov/23

Answered by mr W last updated on 05/Nov/23

1)  n×n!=(n+1−1)×n!=(n+1)!−n!  1×1!+2×2!+...+2022×2022!  =2!−1!+3!−2!+....+2023!−2022!  =2023!−1!  ⇒ab=2023×1=2023    2)  f(a+b)=f(a)+f(b)+ab  f(2a)=2f(a)+a^2     f(2)=2f(1)+1^2 =5 ⇒f(1)=2  f(4)=2f(2)+2^2 =2×5+4=14  f(5)=f(4)+f(1)+4×1=14+2+4=20  f(10)=2f(5)+5^2 =2×20+25=65  f(11)=f(10)+f(1)+10×1=65+2+10=77    or generally f(x)=((x(x+3))/2)  ⇒f(11)=((11×14)/2)=77

1)n×n!=(n+11)×n!=(n+1)!n!1×1!+2×2!+...+2022×2022!=2!1!+3!2!+....+2023!2022!=2023!1!ab=2023×1=20232)f(a+b)=f(a)+f(b)+abf(2a)=2f(a)+a2f(2)=2f(1)+12=5f(1)=2f(4)=2f(2)+22=2×5+4=14f(5)=f(4)+f(1)+4×1=14+2+4=20f(10)=2f(5)+52=2×20+25=65f(11)=f(10)+f(1)+10×1=65+2+10=77orgenerallyf(x)=x(x+3)2f(11)=11×142=77

Commented by hardmath last updated on 05/Nov/23

thank you dear professor cool

thankyoudearprofessorcool

Commented by hardmath last updated on 05/Nov/23

thank you dear professor perfect solutions

thankyoudearprofessorperfectsolutions

Commented by hardmath last updated on 05/Nov/23

dear professor,  how did you get the generalized solution  and is it always true?

dearprofessor,howdidyougetthegeneralizedsolutionandisitalwaystrue?

Commented by mr W last updated on 05/Nov/23

since f(x+y)=f(x)+f(y)+xy, you can  assume f(x)=ax^2 +bx+c with f(2)=5.  then you get a=(1/2), b=(3/2), c=0.

sincef(x+y)=f(x)+f(y)+xy,youcanassumef(x)=ax2+bx+cwithf(2)=5.thenyougeta=12,b=32,c=0.

Answered by deleteduser1 last updated on 05/Nov/23

f(4)=10+4=14⇒f(8)=44  5=2f(1)+1⇒f(1)=2;f(3)=7+2=9  f(11)=44+9+24=77

f(4)=10+4=14f(8)=445=2f(1)+1f(1)=2;f(3)=7+2=9f(11)=44+9+24=77

Commented by hardmath last updated on 05/Nov/23

thank you professor

thankyouprofessor

Answered by ajfour last updated on 05/Nov/23

2.  f(x+h)−f(x)=f(h)+hx  f ′(x)=((f(0))/h)+x  ⇒  f(0)=0  f(x)=(x^2 /2)+kx  as   f(2)=(2^2 /2)+2k=5    ⇒  k=(3/2)  f(x)=(x^2 /2)+((3x)/2)=((x(x+3))/2)

2.f(x+h)f(x)=f(h)+hxf(x)=f(0)h+xf(0)=0f(x)=x22+kxasf(2)=222+2k=5k=32f(x)=x22+3x2=x(x+3)2

Commented by hardmath last updated on 05/Nov/23

thank you professor

thankyouprofessor

Terms of Service

Privacy Policy

Contact: info@tinkutara.com