All Questions Topic List
Coordinate Geometry Questions
Previous in All Question Next in All Question
Previous in Coordinate Geometry Next in Coordinate Geometry
Question Number 199625 by cortano12 last updated on 06/Nov/23
GivenFibonacciseriesF1=F2=1andFn+2=Fn+1+Fnforn>0.FindtheremainderF2022dividesby5
Answered by witcher3 last updated on 06/Nov/23
F3=2,f4=3,f5=5,f6=8,f7=13,f8=21,f9=34f10=55,f11=89,f12=144,f13=233,X2−X−1=0X=1+52,1−52a(1+52)n+b(1−52)n=una+b2+52(a−b)=1a(6+254)+b(6−254)=152(a−b)+32(a+b)=1a+b=0⇒a=−ba=15fn=15[(5+12)n−(1−5)n2n]fn=12n15(∑nk=0((nk)((5)k−(−5)k)2nfn=2∑[n−12]k=0(n2k+1)(5k)≡2n[5]n=4k⇒2n≡1[5],2nfn≡fn[5]n=4k+1⇒2n≡2[5],2nfn≡2fn[5]n=4k+2⇒2nfn≡4fn[5]n≡4k+3⇒2nfn≡3fn[5]n=2022≡2[4]22022≡4[5]⇒4f2022≡2.2022[5]⇔4f2022≡4[5]⇔f2002≡1[5]morgeneraly2nfn≡2n[5],2n=5g+rn=4k+t⇒24k+t≡2t[5]⇔2nfn≡2tfn≡2n[5]≡r[5]2tfn≡r[5]⇒24−t.2tfn≡24−tr[5]⇔fn=24−tr[5],Exempln=13,t=1,2.13=26⇒r=1f13≡24−1.1[5]≡8=3[5].truef13=233
Terms of Service
Privacy Policy
Contact: info@tinkutara.com