Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 199625 by cortano12 last updated on 06/Nov/23

Given Fibonacci series    F_1 =F_2 = 1 and F_(n+2) = F_(n+1) +F_n    for n>0. Find the remainder    F_(2022)  divides by 5

GivenFibonacciseriesF1=F2=1andFn+2=Fn+1+Fnforn>0.FindtheremainderF2022dividesby5

Answered by witcher3 last updated on 06/Nov/23

F_3 =2,f_4 =3,f_5 =5,f_6 =8,f_7 =13,f_8 =21,f_9 =34  f_(10) =55,f_(11) =89,f_(12) =144,f_(13) =233,  X^2 −X−1=0  X=((1+(√5))/2),((1−(√5))/2)  a(((1+(√5))/2))^n +b(((1−(√5))/2))^n =u_n   ((a+b)/2)+((√5)/2)(a−b)=1  a(((6+2(√5))/4))+b(((6−2(√5))/4))=1  ((√5)/2)(a−b)+(3/2)(a+b)=1  a+b=0⇒a=−b  a=(1/( (√5)))  f_n =(1/( (√5)))[((((√5)+1)/2))^n −(((1−(√5))^n )/2^n )]  f_n =(1/2^n )(1/( (√5)))(Σ_(k=0) ^n ( ((n),(k) )(((√5))^k −(−(√5))^k )  2^n f_n =2Σ_(k=0) ^([((n−1)/2)])  ((n),((2k+1)) )(5^k )≡2n[5]  n=4k⇒2^n ≡1[5],2^n f_n ≡f_n [5]  n=4k+1⇒2^n ≡2[5],2^n f_n ≡2f_n [5]  n=4k+2⇒2^n f_n ≡4f_n [5]  n≡4k+3⇒2^n f_n ≡3f_n [5]  n=2022≡2[4]  2^(2022) ≡4[5]⇒4f_(2022) ≡2.2022[5]  ⇔4f_(2022) ≡4[5]⇔f_(2002) ≡1[5]  mor generaly  2^n f_n ≡2n[5],2n=5g+r  n=4k+t⇒2^(4k+t) ≡2^t [5]  ⇔2^n f_n ≡2^t f_n ≡2n[5]≡r[5]  2^t f_n ≡r[5]⇒2^(4−t) .2^t f_n ≡2^(4−t) r[5]  ⇔f_n =2^(4−t) r[5],Exempl  n=13,t=1,2.13=26⇒r=1  f_(13) ≡2^(4−1) .1[5]≡8=3[5].true  f_(13) =233

F3=2,f4=3,f5=5,f6=8,f7=13,f8=21,f9=34f10=55,f11=89,f12=144,f13=233,X2X1=0X=1+52,152a(1+52)n+b(152)n=una+b2+52(ab)=1a(6+254)+b(6254)=152(ab)+32(a+b)=1a+b=0a=ba=15fn=15[(5+12)n(15)n2n]fn=12n15(nk=0((nk)((5)k(5)k)2nfn=2[n12]k=0(n2k+1)(5k)2n[5]n=4k2n1[5],2nfnfn[5]n=4k+12n2[5],2nfn2fn[5]n=4k+22nfn4fn[5]n4k+32nfn3fn[5]n=20222[4]220224[5]4f20222.2022[5]4f20224[5]f20021[5]morgeneraly2nfn2n[5],2n=5g+rn=4k+t24k+t2t[5]2nfn2tfn2n[5]r[5]2tfnr[5]24t.2tfn24tr[5]fn=24tr[5],Exempln=13,t=1,2.13=26r=1f13241.1[5]8=3[5].truef13=233

Terms of Service

Privacy Policy

Contact: info@tinkutara.com