Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 199638 by witcher3 last updated on 06/Nov/23

∫_0 ^1 ∫_0 ^1 cos(max(x^3 ,y^(3/2) ))dxdy=A  old Quation By mr,univers  x^3 =t,y^(3/2) =s  A=(2/9)∫_0 ^1 ∫_0 ^1 cos(max(t,s))t^(−(2/3)) s^(−(1/3)) dtds  ∫_0 ^1 ∫_0 ^1 cos(max(t,s))t^(−(2/3)) s^(−(1/3)) dtds=∫_0 ^1 t^(−(2/3)) ∫_t ^1 cos(s)s^(−(1/3)) dsdt_(=C)   +∫_0 ^1 s^(−(1/3)) ∫_s ^1 cos(t)t^(−(2/3)) dtds_(=B)   c=∫_0 ^1 t^(−(2/3)) ∫_t ^1 Σ_(n≥0) (((−1)^n )/(2n!)).s^(2n−(1/3)) dsdt=Σ_(n≥0) (((−1)^n )/(2n!))∫_0 ^1 t^(−(2/3)) ∫_t ^1 s^(2n−(1/3)) dsdt  =Σ_(n≥0) (((−1)^n )/((2n)!))∫_0 ^1 ((1−t^(2n+(2/3)) )/(2n+(2/3))).t^(−(2/3)) dt  =Σ_(n≥0) (((−1)^n )/((2n)!(2n+(2/3)))).(3−(1/(2n+1)))=3Σ_(n≥0) (((−1)^n )/((2n+1)!))=3sin(1)  B=∫_0 ^1 s^(−(1/3)) ∫_s ^1 Σ_(n≥0) (((−1)^n )/((2n)!))t^(2n−(2/3)) dtds  =Σ(((−1)^n )/((2n)!))∫_0 ^1 s^(−(1/3)) .(((1−s^(2n+(1/3)) )/(2n+(1/3))))ds  =Σ_(n≥0) (((−1)^n )/((2n)!(2n+(1/3))))((3/2)−(1/(2n+1)))  =(3/2)Σ_(n≥0) (((−1)^n )/((2n+1)!))=(3/2)sin(1)  A=(2/9)(c+B)=(2/9)((3/2)sin(1)+3sin(1))  =sin(1)  ∫_0 ^1 ∫_0 ^1 cos(Max(x^3 ,y^(3/2) ))dxdy=sin(1)

0101cos(max(x3,y32))dxdy=AoldQuationBymr,universx3=t,y32=sA=290101cos(max(t,s))t23s13dtds0101cos(max(t,s))t23s13dtds=01t23t1cos(s)s13dsdt=C+01s13s1cos(t)t23dtds=Bc=01t23t1n0(1)n2n!.s2n13dsdt=n0(1)n2n!01t23t1s2n13dsdt=n0(1)n(2n)!011t2n+232n+23.t23dt=n0(1)n(2n)!(2n+23).(312n+1)=3n0(1)n(2n+1)!=3sin(1)B=01s13s1n0(1)n(2n)!t2n23dtds=Σ(1)n(2n)!01s13.(1s2n+132n+13)ds=n0(1)n(2n)!(2n+13)(3212n+1)=32n0(1)n(2n+1)!=32sin(1)A=29(c+B)=29(32sin(1)+3sin(1))=sin(1)0101cos(Max(x3,y32))dxdy=sin(1)

Commented by universe last updated on 06/Nov/23

thanks sir

thankssir

Commented by witcher3 last updated on 06/Nov/23

withe Pleasur

withePleasur

Terms of Service

Privacy Policy

Contact: info@tinkutara.com