All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 199638 by witcher3 last updated on 06/Nov/23
∫01∫01cos(max(x3,y32))dxdy=AoldQuationBymr,universx3=t,y32=sA=29∫01∫01cos(max(t,s))t−23s−13dtds∫01∫01cos(max(t,s))t−23s−13dtds=∫01t−23∫t1cos(s)s−13dsdt=C+∫01s−13∫s1cos(t)t−23dtds=Bc=∫01t−23∫t1∑n⩾0(−1)n2n!.s2n−13dsdt=∑n⩾0(−1)n2n!∫01t−23∫t1s2n−13dsdt=∑n⩾0(−1)n(2n)!∫011−t2n+232n+23.t−23dt=∑n⩾0(−1)n(2n)!(2n+23).(3−12n+1)=3∑n⩾0(−1)n(2n+1)!=3sin(1)B=∫01s−13∫s1∑n⩾0(−1)n(2n)!t2n−23dtds=Σ(−1)n(2n)!∫01s−13.(1−s2n+132n+13)ds=∑n⩾0(−1)n(2n)!(2n+13)(32−12n+1)=32∑n⩾0(−1)n(2n+1)!=32sin(1)A=29(c+B)=29(32sin(1)+3sin(1))=sin(1)∫01∫01cos(Max(x3,y32))dxdy=sin(1)
Commented by universe last updated on 06/Nov/23
thankssir
Commented by witcher3 last updated on 06/Nov/23
withePleasur
Terms of Service
Privacy Policy
Contact: info@tinkutara.com