Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 199688 by cortano12 last updated on 07/Nov/23

Commented by cortano12 last updated on 07/Nov/23

prove that formula

provethatformula

Answered by deleteduser1 last updated on 07/Nov/23

Let d and e be the diagonals of the cyclic   quadrilateral;  Ptolemy′s theorem⇒de=2br+ac...(i)  Also, d=(√(4r^2 −a^2 ));e=(√(4r^2 −c^2 ))  ⇒de=(√(16r^4 −4r^2 c^2 −4a^2 r^2 +a^2 c^2 ))=2br+ac  ⇒16r^4 −4r^2 c^2 −4a^2 r^2 +a^2 c^2 =4b^2 r^2 +a^2 c^2 +4abcr  ⇒4r^2 (4r^2 −c^2 −a^2 )=4r^2 (b^2 +((abc)/r))  ⇒a^2 +b^2 +c^2 +((abc)/r)=4r^2

Letdandebethediagonalsofthecyclicquadrilateral;Ptolemystheoremde=2br+ac...(i)Also,d=4r2a2;e=4r2c2de=16r44r2c24a2r2+a2c2=2br+ac16r44r2c24a2r2+a2c2=4b2r2+a2c2+4abcr4r2(4r2c2a2)=4r2(b2+abcr)a2+b2+c2+abcr=4r2

Answered by mr W last updated on 07/Nov/23

Commented by mr W last updated on 07/Nov/23

β=π−α ⇒cos β=−cos α=−(c/(2r))  a^2 +b^2 +2ab×(c/(2r))=AC^2 =(2r)^2 −c^2   ⇒a^2 +b^2 +c^2 +((abc)/r)=4r^2

β=παcosβ=cosα=c2ra2+b2+2ab×c2r=AC2=(2r)2c2a2+b2+c2+abcr=4r2

Answered by som(math1967) last updated on 07/Nov/23

cos∠BAC=(a/(2r))  cos(180−∠BAC)=((b^2 +c^2 −BD^2 )/(2bc))   (a/(2r))=((BD^2 −b^2 −c^2 )/(2bc))  ⇒(a/r)=((4r^2 −a^2 −b^2 −c^2 )/(bc))  ⇒((abc)/r) +a^2 +b^2 +c^2 =4r^2

cosBAC=a2rcos(180BAC)=b2+c2BD22bca2r=BD2b2c22bcar=4r2a2b2c2bcabcr+a2+b2+c2=4r2

Commented by som(math1967) last updated on 07/Nov/23

Answered by MM42 last updated on 07/Nov/23

AB^2 =a^2 +b^2 −2abcosα  AB^2 =4r^2 −c^2   ⇒a^2 +b^2 +c^2 −2abcosα=4r^2   ⇒a^2 +b^2 +c^2 −2abcos(π−β)=4r^2   ⇒a^2 +b^2 +c^2 +2abcosβ=4r^2   ⇒a^2 +b^2 +c^2 +((abc)/r)=4r^2   ✓

AB2=a2+b22abcosαAB2=4r2c2a2+b2+c22abcosα=4r2a2+b2+c22abcos(πβ)=4r2a2+b2+c2+2abcosβ=4r2a2+b2+c2+abcr=4r2

Commented by MM42 last updated on 07/Nov/23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com