Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 208733 by Frix last updated on 22/Jun/24

2∫_(1/3) ^1 ((x(√(−3x^2 +4x−1)))/(7x^2 −4x+1))dx=?  Exact solution needed.

2113x3x2+4x17x24x+1dx=?Exactsolutionneeded.

Answered by Ghisom last updated on 24/Jun/24

2∫_(1/3) ^1 ((x(√(−3x^2 +4x−1)))/(7x^2 −4x+1))dx=       [t=arcsin (3x−2) → dx=((√(−3x^2 +4x−1))/( (√3)))dt]  =((2(√3))/( 3))∫_(−π/2) ^(π/2)  (((2+sin t)cos^2  t)/(7sin^2  t +16sin t +13))dt=  =((24(√3))/(49))∫_(−π/2) ^(π/2)  ((2+3sin t)/(7sin^2  t +16sin t +13))dt+((2(√3))/(147))∫_(−π/2) ^(π/2) (2−7sin t)dt  ((2(√3))/(147))∫_(−π/2) ^(π/2) (2−7sin t)dt=((2(√3))/(147))[2t+7cos t]_(−π/2) ^(π/2) =  =((4(√3)π)/(147))  ((24(√3))/(49))∫_(−π/2) ^(π/2)  ((2+3sin t)/(7sin^2  t +16sin t +13))dt=       [u=tan (t/2) → dt=((2du)/(u^2 +1))]  =((96(√3))/(49))∫_(−1) ^1  ((u^2 +3u+1)/(13u^4 +32u^3 +54u^2 +32u+13))du=  =((96(√3))/(637))∫_(−1) ^1 ((u^2 +3u+1)/(Π(u^2 +((4(4±(√3)))/(13))u+((19±8(√3))/(13)))))du=  =I_1 +I_2   I_1 =((16)/(49))∫_(−1) ^1 ((u+((29−4(√3))/(52)))/(u^2 +((4(4−(√3)))/(13))u+((19−8(√3))/(13))))du  I_2 =−((16)/(49))∫_(−1) ^1 ((u+((29+4(√3))/(52)))/(u^2 +((4(4+(√3)))/(13))u+((19+8(√3))/(13))))du  I_1 =[((4(√3))/(147))arctan (((4+(√3))u+2)/3) +(8/(49))ln (u^2 +((4(4−(√3)))/(13))u+((19−8(√3))/(13)))]_(−1) ^1   I_2 =[((4(√3))/(147))arctan (((4−(√3))u+2)/3) −(8/(49))ln (u^2 +((4(4+(√3)))/(13))u+((19+8(√3))/(13)))]_(−1) ^1   I_1 +I_2 =((4(√3))/(147))(arctan ((6+(√3))/3) +ectan ((6−(√3))/3) +arctan ((2+(√3))/3) +arctan ((2−(√3))/3))=  =((4(√3)π)/(147))  ⇒  2∫_(1/3) ^1 ((x(√(−3x^2 +4x−1)))/(7x^2 −4x+1))dx=((8(√3)π)/(147))

211/3x3x2+4x17x24x+1dx=[t=arcsin(3x2)dx=3x2+4x13dt]=233π/2π/2(2+sint)cos2t7sin2t+16sint+13dt==24349π/2π/22+3sint7sin2t+16sint+13dt+23147π/2π/2(27sint)dt23147π/2π/2(27sint)dt=23147[2t+7cost]π/2π/2==43π14724349π/2π/22+3sint7sin2t+16sint+13dt=[u=tant2dt=2duu2+1]=9634911u2+3u+113u4+32u3+54u2+32u+13du==96363711u2+3u+1Π(u2+4(4±3)13u+19±8313)du==I1+I2I1=164911u+294352u2+4(43)13u+198313duI2=164911u+29+4352u2+4(4+3)13u+19+8313duI1=[43147arctan(4+3)u+23+849ln(u2+4(43)13u+198313)]11I2=[43147arctan(43)u+23849ln(u2+4(4+3)13u+19+8313)]11I1+I2=43147(arctan6+33+ectan633+arctan2+33+arctan233)==43π147211/3x3x2+4x17x24x+1dx=83π147

Commented by Frix last updated on 24/Jun/24

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com