All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 208733 by Frix last updated on 22/Jun/24
2∫113x−3x2+4x−17x2−4x+1dx=?Exactsolutionneeded.
Answered by Ghisom last updated on 24/Jun/24
2∫11/3x−3x2+4x−17x2−4x+1dx=[t=arcsin(3x−2)→dx=−3x2+4x−13dt]=233∫π/2−π/2(2+sint)cos2t7sin2t+16sint+13dt==24349∫π/2−π/22+3sint7sin2t+16sint+13dt+23147∫π/2−π/2(2−7sint)dt23147∫π/2−π/2(2−7sint)dt=23147[2t+7cost]−π/2π/2==43π14724349∫π/2−π/22+3sint7sin2t+16sint+13dt=[u=tant2→dt=2duu2+1]=96349∫1−1u2+3u+113u4+32u3+54u2+32u+13du==963637∫1−1u2+3u+1Π(u2+4(4±3)13u+19±8313)du==I1+I2I1=1649∫1−1u+29−4352u2+4(4−3)13u+19−8313duI2=−1649∫1−1u+29+4352u2+4(4+3)13u+19+8313duI1=[43147arctan(4+3)u+23+849ln(u2+4(4−3)13u+19−8313)]−11I2=[43147arctan(4−3)u+23−849ln(u2+4(4+3)13u+19+8313)]−11I1+I2=43147(arctan6+33+ectan6−33+arctan2+33+arctan2−33)==43π147⇒2∫11/3x−3x2+4x−17x2−4x+1dx=83π147
Commented by Frix last updated on 24/Jun/24
��
Terms of Service
Privacy Policy
Contact: info@tinkutara.com