All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 5764 by sanusihammed last updated on 26/May/16
2x=4xSolution2x=4xThiscanberewriteas(1+1)x=4xUsingcombinationtoepandfromtheidentity.(1+x)n=1+nx+n(n−1)2!x2+n(n−1)(n−2)3!x3+....+nCrxrTherefore.(1+1)x=4x1+x+x(x−1)2!(12)+x(x−1)(x−2)3!(13)+......+1=4xignorethecontinuity(whatruleis.....ignorethe+...+)isitlinearapproximation1+x+x2−x2×1+(x2−x)(x−2)3×2×1+1=4x1+x+x2−x2+x3−2x2−x2+2x6+1=4x1+x+x2−x2+x3−3x2+2x6+1=4xMultiplythroughby66+6x+3(x2−x)+x3−3x2+2x+6=24x12+6x+3x2−3x+x3−3x2+2x+6=24x12+5x+x3=24x12+5x+x3−24x=0x3−19x+12=0Factorizex3−4x2+4x2−16x−3x+12=0(x3−4x2)+(4x2−16x)−(3x+12)=0x2(x−4)+4x(x−4)−3(x−4)=0Factorout(x−4)(x−4)(x2+4x−3)=0x−4=0orx2+4x−3=0x=4orx=0.6458orx=−4.6458Theonlyrealsolutionisx=4Thereforex=4DONE!Pleaseconfirmthesolution.isitcorrectorpleasecorectitorshowmealternative.Thisismytrial.Thanks.
Commented by prakash jain last updated on 26/May/16
(1+x)n=∑ni=0nCixionlyifn∈Z
Terms of Service
Privacy Policy
Contact: info@tinkutara.com