Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 2000 by Yozzi last updated on 29/Oct/15

Find a non−constant function f   satisfying f(0)=1,f(−2)=0 and  f(x−y)=f(x)f(y)−f(−2−x)f(y−2).

Findanonconstantfunctionfsatisfyingf(0)=1,f(2)=0andf(xy)=f(x)f(y)f(2x)f(y2).

Commented by prakash jain last updated on 29/Oct/15

x=0  f(−y)=f(0)f(y)−f(−2)f(y−2)  ∵f(−2)=0 for the above relation to be  true ∀y.  f(−y)=f(y)  ⇒even function  y=x  f(0)=[f(x)]^2 −f(−2−x)f(x−2)  [f(x)]^2 =1+f(x−2)f(x+2)

x=0f(y)=f(0)f(y)f(2)f(y2)f(2)=0fortheaboverelationtobetruey.f(y)=f(y)evenfunctiony=xf(0)=[f(x)]2f(2x)f(x2)[f(x)]2=1+f(x2)f(x+2)

Commented by prakash jain last updated on 30/Oct/15

y=2  f(x−2)=f(x)f(2)−f(x+2)f(0)  f(x−2)=−f(x+2)  f(x)=−f(x+4)  f(x+8)=[f(x+4+4)]=−f(x+4)=f(x)  f is periodic with period 8.  cos [(π/4)(x−y)]=cos (π/4)x∙cos (π/4)y+sin( (π/4)x)sin ((π/4)y)  sin ((πy)/4)=cos (((π(y−2))/4))  sin ((πx)/4)=−cos ((π/2)+(π/4)x)=−cos (((π(−x−2))/4))

y=2f(x2)=f(x)f(2)f(x+2)f(0)f(x2)=f(x+2)f(x)=f(x+4)f(x+8)=[f(x+4+4)]=f(x+4)=f(x)fisperiodicwithperiod8.cos[π4(xy)]=cosπ4xcosπ4y+sin(π4x)sin(π4y)sinπy4=cos(π(y2)4)sinπx4=cos(π2+π4x)=cos(π(x2)4)

Answered by Rasheed Soomro last updated on 02/Nov/15

Find a non−constant function f   satisfying f(0)=1,f(−2)=0 and  f(x−y)=f(x)f(y)−f(−2−x)f(y−2)...........(1)  −−−−−−×××−−−−−−−  x=−2,y=x  f(−2−x)=f(−2)f(x)−f(−2−{−2})f(x−2)  f(−2−x)=0.f(x)−f(0)f(x−2)=−f(x−2)  f(−2−x)=−f(x−2)=−{f(x)f(2)−f(−2−x)f(2−2)}                =−{f(x)f(2)−f(−2−x)f(0)}=f(−x−2)−f(2)f(x)  f(−x−2)−f(−x−2)=−f(2)f(x)  f(2)=0 ∣ f(x)=0  [But this not non−constant]  ∗∗∗  Substituting y=0  f(x)=f(x)f(0)−f(−2−x)f(−2)           =f(x)  This means f(x)  is arbitrary if y=0.  x=−2−x  f(−2−x−y)=f(−2−x)f(y)−f(−2−{})  continue

Findanonconstantfunctionfsatisfyingf(0)=1,f(2)=0andf(xy)=f(x)f(y)f(2x)f(y2)...........(1)×××x=2,y=xf(2x)=f(2)f(x)f(2{2})f(x2)f(2x)=0.f(x)f(0)f(x2)=f(x2)f(2x)=f(x2)={f(x)f(2)f(2x)f(22)}={f(x)f(2)f(2x)f(0)}=f(x2)f(2)f(x)f(x2)f(x2)=f(2)f(x)f(2)=0f(x)=0[Butthisnotnonconstant]Substitutingy=0f(x)=f(x)f(0)f(2x)f(2)=f(x)Thismeansf(x)isarbitraryify=0.x=2xf(2xy)=f(2x)f(y)f(2{})continue

Answered by prakash jain last updated on 30/Oct/15

f(x)=cos ((πx)/4)

f(x)=cosπx4

Commented by prakash jain last updated on 30/Oct/15

see comments in question for explaination.

seecommentsinquestionforexplaination.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com