All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 200254 by mnjuly1970 last updated on 16/Nov/23
calculate...Ω=∫∫0π2ln(tan(x))dx∫0∞sin2(x)x2dxln(sin(x))dx=?
Answered by Mathspace last updated on 16/Nov/23
itsatrikyintegralwehave∫0π2ln(tanx)dx=∫0π2ln(sinxcosx)dx=∫0π2ln(sinx)dx−∫0π2ln(cosx)dx=0(equal)∫0∞sin2xx2dx=[−1xsin2x]0∞−∫0∞(−1x)2sinxcosxdx=0+∫0∞sin(2x)xdx(2x=t)=∫0∞sintt2dt2=∫0∞sinttdt=π2⇒I=∫0π2ln(sinx)dx=−π2ln2
Commented by Calculusboy last updated on 16/Nov/23
thankssir
Commented by mnjuly1970 last updated on 17/Nov/23
thanksalotsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com