Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 200254 by mnjuly1970 last updated on 16/Nov/23

        calculate ...    Ω = ∫_(∫_0 ^( (π/2))  ln(tan(x))dx) ^( ∫_0 ^( ∞)  ((sin^2 (x))/x^2 ) dx) ln(sin(x))dx=?

calculate...Ω=0π2ln(tan(x))dx0sin2(x)x2dxln(sin(x))dx=?

Answered by Mathspace last updated on 16/Nov/23

its a triky integral  we have ∫_0 ^(π/2) ln(tanx)dx  =∫_0 ^(π/2) ln(((sinx)/(cosx)))dx  =∫_0 ^(π/2) ln(sinx)dx−∫_0 ^(π/2) ln(cosx)dx=0(equal)  ∫_0 ^∞  ((sin^2 x)/x^2 )dx=[−(1/x)sin^2 x]_0 ^∞   −∫_0 ^∞ (−(1/x))2sinx cosx dx  =0+∫_0 ^∞ ((sin(2x))/x)dx   (2x=t)  =∫_0 ^∞ ((sint)/(t/2))(dt/2)=∫_0 ^∞ ((sint)/t)dt=(π/2)  ⇒I=∫_0 ^(π/2) ln(sinx)dx  =−(π/2)ln2

itsatrikyintegralwehave0π2ln(tanx)dx=0π2ln(sinxcosx)dx=0π2ln(sinx)dx0π2ln(cosx)dx=0(equal)0sin2xx2dx=[1xsin2x]00(1x)2sinxcosxdx=0+0sin(2x)xdx(2x=t)=0sintt2dt2=0sinttdt=π2I=0π2ln(sinx)dx=π2ln2

Commented by Calculusboy last updated on 16/Nov/23

thanks sir

thankssir

Commented by mnjuly1970 last updated on 17/Nov/23

thanks alot sir

thanksalotsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com