All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 200309 by sonukgindia last updated on 17/Nov/23
Answered by Mathspace last updated on 17/Nov/23
J=∫02πdxa2−2asinx+1=∫02πdxa2−2aeix−e−ix2i+1(eix=z)=∫∣z∣=1dziz(a2+ia(z−z−1)+1)=∫∣z∣=1−idza2z+iaz2−ia+z=∫∣z∣=1−idziaz2+(a2+1)z−iaf(z)=−iiaz2+(a2+1)z−iapolesoff?Δ=(a2+1)2−4(ia)(−ia)=a4+2a2+1−4a2=(a2−1)2andΔ=∣a2−1∣=1−a2z1=−a2−1+1−a22ia=−1ia=ia⇒∣z1∣=∣a∣<1z2=−a2−1−1+a22ia=−1ia=ia⇒∣z2∣=1a>1residustheoremgive∫∣z∣=1f(z)dz=2iπRes(f,z1)Res(f,z1)=limz→z1(z−z1)−iaia(z−z1)(z−z2)=−1z1−z2=−1ia−ia=ia2−1⇒∫∣z∣=1f(z)dz=2iπ.ia2−1=−2πa2−1=2π1−a2⇒∙J=2π1−a2∙
Answered by Frix last updated on 17/Nov/23
∫2π0dxa2−2asinx+1==2∫π0dxa2−2acosx+1=t=1+a1−atanx2=41−a2∫∞0dtt2+1=2π1−a2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com