Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 200309 by sonukgindia last updated on 17/Nov/23

Answered by Mathspace last updated on 17/Nov/23

J=∫_0 ^(2π) (dx/(a^2 −2asinx +1))  =∫_0 ^(2π) (dx/(a^2 −2a((e^(ix) −e^(−ix) )/(2i))+1))(e^(ix) =z)  =∫_(∣z∣=1) (dz/(iz(a^2 +ia(z−z^(−1) )+1)))  =∫_(∣z∣=1) ((−idz)/(a^2 z+iaz^2 −ia +z))  =∫_(∣z∣=1) ((−idz)/(iaz^2 +(a^2 +1)z−ia))  f(z)=((−i)/(iaz^2 +(a^2 +1)z−ia))  poles of f?  Δ=(a^2 +1)^2 −4(ia)(−ia)  =a^4 +2a^2 +1−4a^2 =(a^2 −1)^2   and (√Δ)=∣a^2 −1∣=1−a^2   z_1 =((−a^2 −1+1−a^2 )/(2ia))=−(1/i)a  =ia ⇒∣z_1 ∣=∣a∣<1   z_2 =((−a^2 −1−1+a^2 )/(2ia))=−(1/(ia))  =(i/a) ⇒∣z_2 ∣=(1/a)>1  residus theorem give  ∫_(∣z∣=1) f(z)dz=2iπ Res(f,z_1 )  Res(f,z_1 )=lim_(z→z_1 )  (z−z_1 )((−ia)/(ia(z−z_1 )(z−z_2 )))  =((−1)/(z_1 −z_2 ))=((−1)/(ia−(i/a)))=(i/(a^2 −1))  ⇒∫_(∣z∣=1) f(z)dz=2iπ.(i/(a^2 −1))  =((−2π)/(a^2 −1))=((2π)/(1−a^2 ))  ⇒  •J=((2π)/(1−a^2 ))•

J=02πdxa22asinx+1=02πdxa22aeixeix2i+1(eix=z)=z∣=1dziz(a2+ia(zz1)+1)=z∣=1idza2z+iaz2ia+z=z∣=1idziaz2+(a2+1)ziaf(z)=iiaz2+(a2+1)ziapolesoff?Δ=(a2+1)24(ia)(ia)=a4+2a2+14a2=(a21)2andΔ=∣a21∣=1a2z1=a21+1a22ia=1ia=ia⇒∣z1∣=∣a∣<1z2=a211+a22ia=1ia=ia⇒∣z2∣=1a>1residustheoremgivez∣=1f(z)dz=2iπRes(f,z1)Res(f,z1)=limzz1(zz1)iaia(zz1)(zz2)=1z1z2=1iaia=ia21z∣=1f(z)dz=2iπ.ia21=2πa21=2π1a2J=2π1a2

Answered by Frix last updated on 17/Nov/23

∫_0 ^(2π) (dx/(a^2 −2asin x +1))=  =2∫_0 ^π (dx/(a^2 −2acos x +1)) =^(t=((1+a)/(1−a))tan (x/2))   =(4/(1−a^2 )) ∫_0 ^∞  (dt/(t^2 +1)) =((2π)/(1−a^2 ))

2π0dxa22asinx+1==2π0dxa22acosx+1=t=1+a1atanx2=41a20dtt2+1=2π1a2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com