Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 200319 by sonukgindia last updated on 17/Nov/23

Answered by Sutrisno last updated on 17/Nov/23

=∫_0 ^π ((1/(cos^2 x))/((1/(cos^2 x))+((sin^2 x)/(cos^2 x))))dx  =∫_0 ^π ((sec^2 x)/(sec^2 x+tan^2 x))dx  =∫_0 ^π ((sec^2 x)/(1+2tan^2 x))dx  misal : tanθ=(√2)tanx→((sec^2 θ)/( (√2)sec^2 x))dθ=dx  =∫((sec^2 x)/(1+2(((tanθ)/( (√2))))^2 )).((sec^2 θ)/( (√2)sec^2 x))dθ  =(1/( (√2)))∫((sec^2 θ)/(1+tan^2 θ))dθ  =(1/( (√2)))∫dθ  =(1/( (√2)))θ  =(1/( (√2)))arctan((√2)tanx)∣_0 ^π   =(1/( (√2)))[arctan((√2)tanπ)−arctan((√2)tan0)]  =0

=0π1cos2x1cos2x+sin2xcos2xdx=0πsec2xsec2x+tan2xdx=0πsec2x1+2tan2xdxmisal:tanθ=2tanxsec2θ2sec2xdθ=dx=sec2x1+2(tanθ2)2.sec2θ2sec2xdθ=12sec2θ1+tan2θdθ=12dθ=12θ=12arctan(2tanx)0π=12[arctan(2tanπ)arctan(2tan0)]=0

Commented by mr W last updated on 17/Nov/23

(1/2)<(1/(1+sin^2  x))<1  ⇒(π/2)<∫_0 ^π (dx/(1+sin^2  x))<π  that means ∫_0 ^π (dx/(1+sin^2  x)) can never be 0.

12<11+sin2x<1π2<0πdx1+sin2x<πthatmeans0πdx1+sin2xcanneverbe0.

Answered by MM42 last updated on 17/Nov/23

I=∫_0 ^π (1/(1+sin^2 x))dx=2∫_0 ^(π/2) (1/(1+sin^2 x))dx  =2∫_0 ^(π/2) ((1+cot^2 x)/(2+cot^2 x))dx     ;   cotx=u  ⇒I=2∫_0 ^∞ (du/(2+u^2 )) du=(√2) tan^(−1) ((u/( (√2))))]_0 ^∞   =((√2)/2)π  ✓

I=0π11+sin2xdx=20π211+sin2xdx=20π21+cot2x2+cot2xdx;cotx=uI=20du2+u2du=2tan1(u2)]0=22π

Answered by Mathspace last updated on 18/Nov/23

  I=∫_0 ^π (dx/(1+sin^2 x))=∫_0 ^π (dx/(1+((1−cos(2x))/2)))  =2∫_0 ^π (dx/(3−cos(2x)))  (2x=t)  =∫_0 ^(2π) (dt/(3−cost))=∫_0 ^(2π) (dt/(3−((e^(it) +e^(−it) )/2)))  =∫_0 ^(2π) ((2dt)/(6−e^(it) −e^(−it  ) ))  (e^(it) =z)  =∫_(∣z∣=1)    ((2dz)/(iz(6−z−z^(−1) )))  =∫_(∣z∣=1)   ((−2i dz)/(6z−z^2 −1))  =∫_(∣z∣=1)   ((2idz)/(z^2 −6z +1))  f(z)=((2i)/(z^2 −6z+1))  les poles?  Δ^′ =3^2 −1=8 ⇒  z_1 =3+(√8)=3+2(√2)  z_2 =3−(√8)=3−2(√2)  ∣z_1 ∣−1=3+2(√2)−1=2+2(√2)>0  ∣z_2 ∣−1=3−2(√2)−1=2−2(√2)  <0 ⇒  ∫_(∣z∣) f(z)dz=2iπ Res(f,z_2 )  f(z)=((2i)/((z−z_1 )(z−z_2 ))) ⇒  Res(f,z_2 )=((2i)/(z_2 −z_1 ))=((2i)/(−4(√2)))=−(i/(2(√2)))  ∫_(∣z∣=1) f(z)dz=2iπ×((−i)/(2(√2)))  =(π/( (√2))) ⇒★I=(π/( (√2)))★

I=0πdx1+sin2x=0πdx1+1cos(2x)2=20πdx3cos(2x)(2x=t)=02πdt3cost=02πdt3eit+eit2=02π2dt6eiteit(eit=z)=z∣=12dziz(6zz1)=z∣=12idz6zz21=z∣=12idzz26z+1f(z)=2iz26z+1lespoles?Δ=321=8z1=3+8=3+22z2=38=322z11=3+221=2+22>0z21=3221=222<0zf(z)dz=2iπRes(f,z2)f(z)=2i(zz1)(zz2)Res(f,z2)=2iz2z1=2i42=i22z∣=1f(z)dz=2iπ×i22=π2I=π2

Answered by mnjuly1970 last updated on 18/Nov/23

  I=2 ∫_0 ^( (π/2)) ((1+tan^( 2) (x))/(1+2tan^2 (x)))dx=^(tanx=y)       = 2∫_0 ^( ∞) (dy/(1+2y^2 )) = ∫_0 ^( ∞) (dy/((((√2)/2))^2 +y^2 ))       =[ (√2) tan^( −1) ( y(√2) )]_0 ^∞ =((π(√2))/2)

I=20π21+tan2(x)1+2tan2(x)dx=tanx=y=20dy1+2y2=0dy(22)2+y2=[2tan1(y2)]0=π22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com