Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 20038 by Tinkutara last updated on 20/Aug/17

In the figure shown, m slides on  inclined surface of wedge M. If velocity  of wedge at any instant be v, find  velocity of m with respect to ground.

$$\mathrm{In}\:\mathrm{the}\:\mathrm{figure}\:\mathrm{shown},\:{m}\:\mathrm{slides}\:\mathrm{on} \\ $$$$\mathrm{inclined}\:\mathrm{surface}\:\mathrm{of}\:\mathrm{wedge}\:{M}.\:\mathrm{If}\:\mathrm{velocity} \\ $$$$\mathrm{of}\:\mathrm{wedge}\:\mathrm{at}\:\mathrm{any}\:\mathrm{instant}\:\mathrm{be}\:{v},\:\mathrm{find} \\ $$$$\mathrm{velocity}\:\mathrm{of}\:{m}\:\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{ground}. \\ $$

Commented by Tinkutara last updated on 20/Aug/17

Answered by ajfour last updated on 21/Aug/17

 v=−(dy/dt)   ,   u_(rel) =(dx/dt)  x+y=l      (is constant)  so      (dx/dt)=−(dy/dt)   ⇒    u_(rel) =v    u=(√(u_x ^2 +u_y ^2 ))     u_x =v−u_(rel) cos 60° =v−(v/2)=(v/2)     u_y =v_(rel) sin 60°= ((v(√3))/2)    Hence block′s speed with respect  to ground  u=(√(((v/2))^2 +(((v(√3))/2))^2 )) =v .

$$\:{v}=−\frac{{dy}}{{dt}}\:\:\:,\:\:\:{u}_{{rel}} =\frac{{dx}}{{dt}} \\ $$$${x}+{y}={l}\:\:\:\:\:\:\left({is}\:{constant}\right) \\ $$$${so}\:\:\:\:\:\:\frac{{dx}}{{dt}}=−\frac{{dy}}{{dt}}\:\:\:\Rightarrow\:\:\:\:{u}_{{rel}} ={v} \\ $$$$\:\:{u}=\sqrt{{u}_{{x}} ^{\mathrm{2}} +{u}_{{y}} ^{\mathrm{2}} } \\ $$$$\:\:\:{u}_{{x}} ={v}−{u}_{{rel}} \mathrm{cos}\:\mathrm{60}°\:={v}−\frac{{v}}{\mathrm{2}}=\frac{{v}}{\mathrm{2}} \\ $$$$\:\:\:{u}_{{y}} ={v}_{{rel}} \mathrm{sin}\:\mathrm{60}°=\:\frac{{v}\sqrt{\mathrm{3}}}{\mathrm{2}}\: \\ $$$$\:{Hence}\:{block}'{s}\:{speed}\:{with}\:{respect} \\ $$$${to}\:{ground}\:\:{u}=\sqrt{\left(\frac{{v}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{v}\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} }\:={v}\:. \\ $$$$ \\ $$

Commented by Tinkutara last updated on 21/Aug/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com