All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 2004 by Yozzi last updated on 29/Oct/15
Suppose0<b⩽a.Showthattheareaof intersectionE∩Fofthetworegions definedby E={(x,y):x2a2+y2b2⩽1}and F={(x,y):x2b2+y2a2⩽1} is4absin−1(ba2+b2).
Answered by Rasheed Soomro last updated on 08/Nov/15
Strategy ∙E⌢:x2a2+y2b2=1(1)andF⌢:x2b2+y2a2=1(2)areequationsofellipses whichareboundary−curvesoftheregionsEandFrespectively. ∙ForE∩F≠ϕthetwoellipsesintersectattwopoints.Letthese pointsareA(x1,y1)andB(x2,y2). ∙AB―(commonchord)divideseachoftheEandFregions intotwoparts(segments). ∙LeteandfaretheareasofrespectivesegmentsofEandFwhich makeE∩FandA=E∩F.Then A=e+f ∙LetthecoordinatesystemissochangedthatA(x1,y1)is originandx−axisispassedthroughBinnewcoordinate system.ThecoordinatesofAandBwillbe: A=(0,0) andB=(mAB―,0) mAB―=(x2−x1)2+(y2−y1)2 ∙eistheareabetweencurveandx−axisfromx=0to x=mAB―. Soasf. Henceeandfcanbedeterminedusingdefinite− integral−ofthecurve. ∗∗∗∗∗ DetermineintersectionpointsA(x1,y1)andB(x2,y2) ⇒y=±aba2+b2 ⇒x=±aba2+b2 {(aba2+b2,aba2+b2),(aba2+b2,−aba2+b2), (−aba2+b2,aba2+b2),(−aba2+b2,−aba2+b2)} −−−−−−−− mAB―=2aba2+b2,22aba2+b2 −−−−−−−− e=∫0mAB―(±b1−x2a2)dx=±ba∫0mAB―a2−x2dx =±ba∣x2a2−x2+a22sin−1xa+C∣0mAB― =±ba{[2aba2+b22a2−(2aba2+b2)2+a22sin−1(2aba2+b2)a+C] −[02a2−(0)2+a22sin−10a+C]} f=∫0mAB―(±a1−x2b2)dx=±ab∫0mAB―b2−x2dx Continue
Terms of Service
Privacy Policy
Contact: info@tinkutara.com