Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 2004 by Yozzi last updated on 29/Oct/15

Suppose 0<b≤a. Show that the area of  intersection E∩F of the two regions  defined by   E={(x,y):(x^2 /a^2 )+(y^2 /b^2 )≤1} and  F={(x,y):(x^2 /b^2 )+(y^2 /a^2 )≤1}   is    4absin^(−1) ((b/(√(a^2 +b^2 )))).

$${Suppose}\:\mathrm{0}<{b}\leqslant{a}.\:{Show}\:{that}\:{the}\:{area}\:{of} \\ $$ $${intersection}\:{E}\cap{F}\:{of}\:{the}\:{two}\:{regions} \\ $$ $${defined}\:{by}\: \\ $$ $${E}=\left\{\left({x},{y}\right):\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\leqslant\mathrm{1}\right\}\:{and} \\ $$ $${F}=\left\{\left({x},{y}\right):\frac{{x}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\leqslant\mathrm{1}\right\}\: \\ $$ $${is}\:\:\:\:\mathrm{4}{absin}^{−\mathrm{1}} \left(\frac{{b}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\right). \\ $$ $$ \\ $$

Answered by Rasheed Soomro last updated on 08/Nov/15

Strategy  • E^(⌢) :(x^2 /a^2 )+(y^2 /b^2 )=1 (1)  and   F^(⌢) :(x^2 /b^2 )+(y^2 /a^2 )=1 (2) are equations of ellipses    which are boundary−curves of the regions E and F respectively.  •For  E∩F≠φ the two ellipses intersect at two points.Let these   points are A(x_1 ,y_1 ) and  B(x_2 ,y_2 ).  •AB^(−)  (common chord) divides each of the E and F regions   into two parts(segments).  • Let e and f are the areas of  respective segments of E and F which  make E∩F and A =E∩F. Then                              A=e+f  •Let  the coordinate system is so changed that A(x_1 ,y_1 ) is   origin and   x−axis is passed through B in new coordinate   system. The coordinates of A and B will be:                             A=(0,0)            and             B=(mAB^(−) ,0)                              mAB^(−) =(√((x_2 −x_1 )^2 +(y_2 −y_1 )^2 ))   • e is the area between curve and x−axis from x=0 to  x=mAB^(−) .  So as f.           Hence  e and f  can be determined using definite_(−)   integral_(−)  of the curve.                                                      ∗∗∗∗∗  Determine intersection points A(x_1 ,y_1 ) and  B(x_2 ,y_2 )  ⇒y=±((ab)/(√(a^2 +b^2 )))  ⇒x=±((ab)/(√(a^2 +b^2 )))  {(((ab)/(√(a^2 +b^2 ))),((ab)/(√(a^2 +b^2 )))),(((ab)/(√(a^2 +b^2 ))),((−ab)/(√(a^2 +b^2 )))),              (  ((−ab)/(√(a^2 +b^2 ))),((ab)/(√(a^2 +b^2 )))),(((−ab)/(√(a^2 +b^2 ))),((−ab)/(√(a^2 +b^2 ))))}  −−−−−−−−  mAB^(−) =((2ab)/(√(a^2 +b^2 )))  , ((2(√(2 ))ab)/(√(a^2 +b^2 )))   −−−−−−−−          e=∫_0 ^(mAB^(−) ) (±b(√(1−(x^2 /a^2 ))) )dx=±(b/a)∫_0 ^(mAB^(−) )  (√(a^2 −x^2 )) dx            =±(b/a)∣(x/2)(√(a^2 −x^2 ))+(a^2 /2)sin^(−1) (x/a) +C∣_0 ^(mAB^(−) )      =±(b/a){[((((2ab)/(√(a^2 +b^2 ))) )/2)(√(a^2 −(((2ab)/(√(a^2 +b^2 ))))^2 ))+(a^2 /2)sin^(−1) (((((2ab)/(√(a^2 +b^2 )))))/a) +C]                   −[(0/2)(√(a^2 −(0)^2 ))+(a^2 /2)sin^(−1) (0/a) +C]}          f=∫_0 ^(mAB^(−) ) (±a(√(1−(x^2 /b^2 ))) )dx=±(a/b)∫_0 ^(mAB^(−) )  (√(b^2 −x^2 )) dx     Continue

$${Strategy} \\ $$ $$\bullet\:\overset{\frown} {{E}}:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\left(\mathrm{1}\right)\:\:{and}\:\:\:\overset{\frown} {{F}}:\frac{{x}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{a}^{\mathrm{2}} }=\mathrm{1}\:\left(\mathrm{2}\right)\:{are}\:{equations}\:{of}\:{ellipses}\:\: \\ $$ $${which}\:{are}\:{boundary}−{curves}\:{of}\:{the}\:{regions}\:{E}\:{and}\:{F}\:{respectively}. \\ $$ $$\bullet{For}\:\:{E}\cap{F}\neq\phi\:{the}\:{two}\:{ellipses}\:{intersect}\:{at}\:{two}\:{points}.{Let}\:{these}\: \\ $$ $${points}\:{are}\:{A}\left({x}_{\mathrm{1}} ,{y}_{\mathrm{1}} \right)\:{and}\:\:{B}\left({x}_{\mathrm{2}} ,{y}_{\mathrm{2}} \right). \\ $$ $$\bullet\overline {{AB}}\:\left({common}\:{chord}\right)\:{divides}\:{each}\:{of}\:{the}\:{E}\:{and}\:{F}\:{regions}\: \\ $$ $${into}\:{two}\:{parts}\left({segments}\right). \\ $$ $$\bullet\:{Let}\:{e}\:{and}\:{f}\:{are}\:{the}\:{areas}\:{of}\:\:{respective}\:{segments}\:{of}\:{E}\:{and}\:{F}\:{which} \\ $$ $${make}\:{E}\cap{F}\:{and}\:\boldsymbol{\mathrm{A}}\:={E}\cap{F}.\:{Then} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{A}}={e}+{f} \\ $$ $$\bullet{Let}\:\:{the}\:{coordinate}\:{system}\:{is}\:{so}\:{changed}\:{that}\:{A}\left({x}_{\mathrm{1}} ,{y}_{\mathrm{1}} \right)\:{is}\: \\ $$ $${origin}\:{and}\:\:\:{x}−{axis}\:{is}\:{passed}\:{through}\:{B}\:{in}\:{new}\:{coordinate}\: \\ $$ $${system}.\:{The}\:{coordinates}\:{of}\:{A}\:{and}\:{B}\:{will}\:{be}: \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{A}=\left(\mathrm{0},\mathrm{0}\right)\:\:\:\: \\ $$ $$\:\:\:\:\:\:{and}\:\:\:\:\:\:\:\:\:\:\:\:\:{B}=\left({m}\overline {{AB}},\mathrm{0}\right)\:\:\: \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}\overline {{AB}}=\sqrt{\left({x}_{\mathrm{2}} −{x}_{\mathrm{1}} \right)^{\mathrm{2}} +\left({y}_{\mathrm{2}} −{y}_{\mathrm{1}} \right)^{\mathrm{2}} } \\ $$ $$\:\bullet\:{e}\:{is}\:{the}\:{area}\:{between}\:{curve}\:{and}\:{x}−{axis}\:{from}\:{x}=\mathrm{0}\:{to} \\ $$ $${x}={m}\overline {{AB}}. \\ $$ $${So}\:{as}\:{f}. \\ $$ $$\:\:\:\:\:\:\:\:\:{Hence}\:\:{e}\:{and}\:{f}\:\:{can}\:{be}\:{determined}\:{using}\underset{−} {\:{definite}} \\ $$ $$\underset{−} {{integral}}\:{of}\:{the}\:{curve}. \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\ast\ast\ast\ast\ast \\ $$ $${Determine}\:{intersection}\:{points}\:{A}\left({x}_{\mathrm{1}} ,{y}_{\mathrm{1}} \right)\:{and}\:\:{B}\left({x}_{\mathrm{2}} ,{y}_{\mathrm{2}} \right) \\ $$ $$\Rightarrow{y}=\pm\frac{{ab}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$ $$\Rightarrow{x}=\pm\frac{{ab}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$ $$\left\{\left(\frac{{ab}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }},\frac{{ab}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\right),\left(\frac{{ab}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }},\frac{−{ab}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\right),\right. \\ $$ $$\left.\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\:\frac{−{ab}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }},\frac{{ab}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\right),\left(\frac{−{ab}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }},\frac{−{ab}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\right)\right\} \\ $$ $$−−−−−−−− \\ $$ $${m}\overline {{AB}}=\frac{\mathrm{2}{ab}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\:\:,\:\frac{\mathrm{2}\sqrt{\mathrm{2}\:}{ab}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\: \\ $$ $$−−−−−−−− \\ $$ $$\:\:\:\:\:\:\:\:{e}=\int_{\mathrm{0}} ^{{m}\overline {{AB}}} \left(\pm{b}\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}\:\right){dx}=\pm\frac{{b}}{{a}}\int_{\mathrm{0}} ^{{m}\overline {{AB}}} \:\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }\:{dx} \\ $$ $$\:\:\:\:\:\:\:\:\:\:=\pm\frac{{b}}{{a}}\mid\frac{{x}}{\mathrm{2}}\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }+\frac{{a}^{\mathrm{2}} }{\mathrm{2}}{sin}^{−\mathrm{1}} \frac{{x}}{{a}}\:+{C}\mid_{\mathrm{0}} ^{{m}\overline {{AB}}} \\ $$ $$\:\:\:=\pm\frac{{b}}{{a}}\left\{\left[\frac{\frac{\mathrm{2}{ab}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\:}{\mathrm{2}}\sqrt{{a}^{\mathrm{2}} −\left(\frac{\mathrm{2}{ab}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\right)^{\mathrm{2}} }+\frac{{a}^{\mathrm{2}} }{\mathrm{2}}{sin}^{−\mathrm{1}} \frac{\left(\frac{\mathrm{2}{ab}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\right)}{{a}}\:+{C}\right]\right. \\ $$ $$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\left[\frac{\mathrm{0}}{\mathrm{2}}\sqrt{{a}^{\mathrm{2}} −\left(\mathrm{0}\right)^{\mathrm{2}} }+\frac{{a}^{\mathrm{2}} }{\mathrm{2}}{sin}^{−\mathrm{1}} \frac{\mathrm{0}}{{a}}\:+{C}\right]\right\} \\ $$ $$\:\:\:\:\:\:\:\:{f}=\int_{\mathrm{0}} ^{{m}\overline {{AB}}} \left(\pm{a}\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{b}^{\mathrm{2}} }}\:\right){dx}=\pm\frac{{a}}{{b}}\int_{\mathrm{0}} ^{{m}\overline {{AB}}} \:\sqrt{{b}^{\mathrm{2}} −{x}^{\mathrm{2}} }\:{dx}\:\:\: \\ $$ $${Continue} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com