Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 200413 by Mingma last updated on 18/Nov/23

Commented by Mingma last updated on 18/Nov/23

Evaluate!

Answered by witcher3 last updated on 18/Nov/23

 x−(x^3 /6)≤sin(x)≤x    (((ln(k))/k)−(1/6)(((ln(k))/k))_(=v_n ) ^3 )^(1/n) ≤(Σ_(k=2) ^n sin(((ln(k))/k)))^(1/n) ≤(Σ_(k=2) ^n ((ln(k))/k))^(1/n) =u_n   ln(u_n )=(1/n)ln(Σ_(k=2) ^n ((ln(k))/k))≤(1/n)ln(nln(n))→0  ln(v_n )=(1/n)ln(Σ_(k≥2) ^n ((ln(k))/k)−(1/6)(((ln(k))/k))^3 )  Σ_(k≥2) ^n ((ln(k))/k)−(1/6)(((ln(k))/k))^3 ≥Σ_(k=2) ^n (5/6)((ln(k))/k)...(E)  ∃n∈N ∀n≥N Σ_(k=2) ^n ((ln(k))/k).(5/6)≥1  since Σ_(k≥2) ((ln(k))/k) diverge in +∞  E⇒Σ_(k≥2) ^n (((ln(k))/k)−(1/6)(((ln(k))/k))^3 )≥1,∀n≥N  ⇒(1/n)ln(Σ_(k≥2) ^n ((lnk)/k)−(1/6)(((lnk)/k))^3 )≥0,∀n≥N  ⇒∀n≥N    0≤(1/n)ln(Σsin(((lnk)/k)))^ ≤ln(u_n )→0  ⇒(1/n)ln(Σsin(((ln(k))/k)))→0  ⇔(Σ_(k≥2) sin(((ln(k))/k)))^(1/n) →1

xx36sin(x)x(ln(k)k16(ln(k)k)=vn3)1n(nk=2sin(ln(k)k))1n(nk=2ln(k)k)1n=unln(un)=1nln(nk=2ln(k)k)1nln(nln(n))0ln(vn)=1nln(nk2ln(k)k16(ln(k)k)3)nk2ln(k)k16(ln(k)k)3nk=256ln(k)k...(E)nNnNnk=2ln(k)k.561sincek2ln(k)kdivergein+Enk2(ln(k)k16(ln(k)k)3)1,nN1nln(nk2lnkk16(lnkk)3)0,nNnN01nln(Σsin(lnkk))ln(un)01nln(Σsin(ln(k)k))0(k2sin(ln(k)k))1n1

Commented by Mingma last updated on 19/Nov/23

Perfect ��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com