All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 200417 by hardmath last updated on 18/Nov/23
find:Ω=∫1∞x(1+x2)dx=?
Answered by witcher3 last updated on 18/Nov/23
x=y=∫1∞2y2(1+y4)dy=∫1∞2y2(y2+y2+1)(y2−y2+1)=12∫1∞−yy2+y2+1+yy2−y2+1dy=122∫1∞2y−2+2y2−y2+1−2y+2−2y2+y2+1dy=122ln(2−22+2)+12∫1∞dy(y−12)2+12+12∫1∞dy(y+12)2+12=ln(2+22−2)22+12[tan−1(y2−1)+tan−1(y2+1)]1∞=ln(2+22−2)22+12[tan−1(2−1)+tan−1(2+1)]tan−1(2+1)+tan−1(2−1)=π2wegetπ22+ln(1+2)2
Commented by hardmath last updated on 19/Nov/23
thankyoudearprofessor
Terms of Service
Privacy Policy
Contact: info@tinkutara.com