Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 200417 by hardmath last updated on 18/Nov/23

find:   Ω = ∫_1 ^( ∞)  ((√x)/((1 + x^2 ))) dx = ?

find:Ω=1x(1+x2)dx=?

Answered by witcher3 last updated on 18/Nov/23

(√x)=y  =∫_1 ^∞ ((2y^2 )/((1+y^4 )))dy  =∫_1 ^∞ ((2y^2 )/((y^2 +y(√2)+1)(y^2 −y(√2)+1)))  =(1/( (√2)))∫_1 ^∞ −(y/(y^2 +y(√2)+1))+(y/(y^2 −y(√2)+1))dy    =(1/( 2(√2)))∫_1 ^∞ ((2y−(√2)+(√2))/(y^2 −y(√2)+1))−((2y+(√2)−(√2))/(y^2 +y(√2)+1))dy  =(1/(2(√2)))ln(((2−(√2))/(2+(√2))))+(1/2)∫_1 ^∞ (dy/((y−(1/( (√2))))^2 +(1/2)))+(1/2)∫_1 ^∞ (dy/((y+(1/( (√2))))^2 +(1/2)))  =((ln(((2+(√2))/(2−(√2)))))/(2(√2)))+(1/( (√2)))[tan^(−1) (y(√2)−1)+tan^(−1) (y(√2)+1)]_1 ^∞   =((ln(((2+(√2))/(2−(√2)))))/(2(√2)))+(1/( (√2)))[tan^(−1) ((√2)−1)+tan^(−1) ((√2)+1)]  tan^(−1) ((√2)+1)+tan^(−1) ((√2)−1)=(π/2)  we get   (π/( 2(√( 2))))+((ln(1+(√(2))))/( (√2)))

x=y=12y2(1+y4)dy=12y2(y2+y2+1)(y2y2+1)=121yy2+y2+1+yy2y2+1dy=12212y2+2y2y2+12y+22y2+y2+1dy=122ln(222+2)+121dy(y12)2+12+121dy(y+12)2+12=ln(2+222)22+12[tan1(y21)+tan1(y2+1)]1=ln(2+222)22+12[tan1(21)+tan1(2+1)]tan1(2+1)+tan1(21)=π2wegetπ22+ln(1+2)2

Commented by hardmath last updated on 19/Nov/23

thank you dear professor

thankyoudearprofessor

Terms of Service

Privacy Policy

Contact: info@tinkutara.com