Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 200446 by hardmath last updated on 18/Nov/23

fund   Σ_(n=1) ^∞  (((3 + (−1)^n )^n )/n) x^n  = ?

fundn=1(3+(1)n)nnxn=?

Answered by mr W last updated on 19/Nov/23

Σ_(n=1) ^∞ x^(2n) =(x^2 /(1−x^2 ))  Σ_(n=1) ^∞ ∫_0 ^x x^(2n) dx=∫_0 ^x ((x^2 dx)/(1−x^2 ))  Σ_(n=1) ^∞ (x^(2n+1) /(2n+1))dx=∫_0 ^x ((1/(1−x^2 ))−1)dx=(1/2)ln ((1+x)/(1−x))−x  Σ_(n=0) ^∞ (x^(2n+1) /(2n+1))dx=(1/2)ln ((1+x)/(1−x))  ⇒Σ_(n=0) ^∞ (((2x)^(2n+1) )/(2n+1))dx=(1/2)ln ((1+2x)/(1−2x))    Σ_(n=1) ^∞ x^(2n−1) =(x/(1−x^2 ))  Σ_(n=1) ^∞ ∫_0 ^3 x^(2n−1) dx=∫_0 ^x (x/(1−x^2 ))dx  Σ_(n=1) ^∞ (x^(2n) /(2n))=(1/2)ln (1/(1−x^2 ))  ⇒Σ_(n=1) ^∞ (((4x)^(2n) )/(2n))=(1/2)ln (1/(1−16x^2 ))    Σ_(n=1) ^∞ (((3+(−1)^n )^n x^n )/n)  =Σ_(n=0) ^∞ ((2^(2n+1) x^(2n+1) )/(2n+1))+Σ_(n=1) ^∞ ((4^(2n) x^(2n) )/(2n))  =Σ_(n=0) ^∞ (((2x)^(2n+1) )/(2n+1))+Σ_(n=1) ^∞ (((4x)^(2n) )/(2n))  =(1/2)ln ((1+2x)/(1−2x))+(1/2)ln (1/(1−16x^2 ))  =(1/2)ln ((1+2x)/((1−2x)(1−16x^2 ))) ✓

n=1x2n=x21x2n=10xx2ndx=0xx2dx1x2n=1x2n+12n+1dx=0x(11x21)dx=12ln1+x1xxn=0x2n+12n+1dx=12ln1+x1xn=0(2x)2n+12n+1dx=12ln1+2x12xn=1x2n1=x1x2n=103x2n1dx=0xx1x2dxn=1x2n2n=12ln11x2n=1(4x)2n2n=12ln1116x2n=1(3+(1)n)nxnn=n=022n+1x2n+12n+1+n=142nx2n2n=n=0(2x)2n+12n+1+n=1(4x)2n2n=12ln1+2x12x+12ln1116x2=12ln1+2x(12x)(116x2)

Commented by hardmath last updated on 19/Nov/23

perfect my dear professor thank you so much

perfectmydearprofessorthankyousomuch

Terms of Service

Privacy Policy

Contact: info@tinkutara.com