Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 200465 by deleteduser12 last updated on 19/Nov/23

Find the sum of the fifth powers of  the roots of x^3 −2x^2 +x−1=0 by  applying synthetic division

Findthesumofthefifthpowersoftherootsofx32x2+x1=0byapplyingsyntheticdivision

Commented by mr W last updated on 19/Nov/23

you posted your first question on  15/09/2020. since then you have never  given even a single one feedback.  even when people are talking to a  stone wall, it gives an echo back...

youpostedyourfirstquestionon15/09/2020.sincethenyouhavenevergivenevenasingleonefeedback.evenwhenpeoplearetalkingtoastonewall,itgivesanechoback...

Answered by mr W last updated on 19/Nov/23

say the roots are a,b,c.  a+b+c=2  ab+bc+ca=1  abc=1  (a+b+c)^2 =a^2 +b^2 +c^2 +2(ab+bc+ca)  ⇒a^2 +b^2 +c^2 =2^2 −2×1=2    (ab+bc+ca)^2 =a^2 b^2 +b^2 c^2 +c^2 a^2 +2abc(a+b+c)  ⇒a^2 b^2 +b^2 c^2 +c^2 a^2 =1^2 −2×1×2=−3    (a+b+c)^3 =a^3 +b^3 +c^3 −3abc+3(a+b+c)(ab+bc+ca)  ⇒a^3 +b^3 +c^3 =2^3 +3×1−3×2×1=5    (a^2 +b^2 +c^2 )(a^3 +b^3 +c^3 )=a^5 +b^5 +c^5 +(a+b+c)(a^2 b^2 +b^2 c^2 +c^2 a^2 )−abc(ab+bc+ca)  ⇒a^5 +b^5 +c^5 =2×5−2×(−3)+1×1=17 ✓

saytherootsarea,b,c.a+b+c=2ab+bc+ca=1abc=1(a+b+c)2=a2+b2+c2+2(ab+bc+ca)a2+b2+c2=222×1=2(ab+bc+ca)2=a2b2+b2c2+c2a2+2abc(a+b+c)a2b2+b2c2+c2a2=122×1×2=3(a+b+c)3=a3+b3+c33abc+3(a+b+c)(ab+bc+ca)a3+b3+c3=23+3×13×2×1=5(a2+b2+c2)(a3+b3+c3)=a5+b5+c5+(a+b+c)(a2b2+b2c2+c2a2)abc(ab+bc+ca)a5+b5+c5=2×52×(3)+1×1=17

Answered by ajfour last updated on 19/Nov/23

let   x^5 =t  ⇒ x^2 (2x^2 −x+1)=t  2x(2x^2 −x+1)−(2x^2 −x+1)+x^2 =t  4(2x^2 −x+1)−3x^2 +3x−1=t  5x^2 −x+3=t     5(2x^2 −x+1)−x^2 =(t−3)x  9(x+t−3)+25=5(t+2)x  (5t+1)x=9t−2  x=((9t−2)/(5t+1))  (9t−2)^3 −2(5t+1)(9t−2)^2      +(5t+1)^2 (9t−2)−(5t+1)^3 =0  Σ_(i=1) ^3 x_i ^5 =Σ_(i=1) ^3 t_i =−((coeff of t^2 )/(coeff of t^3 ))  =−(((−6×81+360−216−50+90−75))/((729−810+225−125)))  =−(((−323))/(19)) = 17

letx5=tx2(2x2x+1)=t2x(2x2x+1)(2x2x+1)+x2=t4(2x2x+1)3x2+3x1=t5x2x+3=t5(2x2x+1)x2=(t3)x9(x+t3)+25=5(t+2)x(5t+1)x=9t2x=9t25t+1(9t2)32(5t+1)(9t2)2+(5t+1)2(9t2)(5t+1)3=03i=1xi5=3i=1ti=coeffoft2coeffoft3=(6×81+36021650+9075)(729810+225125)=(323)19=17

Commented by mr W last updated on 20/Nov/23

great!

great!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com