Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 200471 by Mingma last updated on 19/Nov/23

Answered by deleteduser1 last updated on 19/Nov/23

((CB_1 )/(B_1 A))×(1/2)×(1/4)=1⇒((CB_1 )/(B_1 A))=8  (([CAB])/([ADB]))=((CC_1 )/(DC_1 ))=((CD)/(DC_1 ))+1=((CB_1 )/(B_1 A))+((CA_1 )/(A_1 B))+1=13  ⇒[ADB]=((65)/(13))=5  (([CDA])/([CDB]))=(1/2)⇒[CDA]+[CDB]=3[CDA]=65−5  ⇒[CDA]=20;(([B_1 CD])/([B_1 AD]))=8  [B_1 CD]+[B_1 AD]=((9[B_1 CD])/8)=20⇒[B_1 CD]=((160)/9)

CB1B1A×12×14=1CB1B1A=8[CAB][ADB]=CC1DC1=CDDC1+1=CB1B1A+CA1A1B+1=13[ADB]=6513=5[CDA][CDB]=12[CDA]+[CDB]=3[CDA]=655[CDA]=20;[B1CD][B1AD]=8[B1CD]+[B1AD]=9[B1CD]8=20[B1CD]=1609

Commented by Rupesh123 last updated on 19/Nov/23

Nice solution,sir!

Commented by klipto last updated on 28/Nov/23

160/9

Answered by mr W last updated on 19/Nov/23

AB^(→) =a  BC^(→) =b  CA^(→) =−a−b  AA_1 ^(→) =a+(1/5)b  CC_1 ^(→) =−(2/3)a−b  say AD=sAA_1 =s(a+(1/5)b)  CD=tCC_1 =t(−(2/3)a−b)  AD=a+b+CD  s(a+(1/5)b)=a+b+t(−(2/3)a−b)  (1−s−((2t)/3))a+(1−(s/5)−t)b=0  1−s−((2t)/3)=0   ...(i)  1−(s/5)−t=0   ...(ii)  ⇒s=(5/(13)), t=((12)/(13))  BD=−a+AD=−a+(5/(13))(a+(1/5)b)=−(8/(13))a+(1/(13))b  say BD=uBB_1 , CB_1 =vCA  v(−a−b)=−b+(1/u)(−(8/(13))a+(1/(13))b)  ((8/(13u))−v)a+(1−(1/(13u))−v)b=0  (8/(13u))−v=0   ...(iii)  1−(1/(13u))−v=0   ...(iv)  ⇒u=(9/(13)), v=(8/9)    Δ_(B_1 CD) =(1−u)Δ_(B_1 CB) =(1−u)vΔ_(ABC)   Δ_(B_1 CD) =(1−(9/(13)))×(8/9)Δ_(ABC) =((32)/(117))Δ_(ABC)                 =((32×65)/(117))=((160)/9)≈17.8

AB=aBC=bCA=abAA1=a+15bCC1=23absayAD=sAA1=s(a+15b)CD=tCC1=t(23ab)AD=a+b+CDs(a+15b)=a+b+t(23ab)(1s2t3)a+(1s5t)b=01s2t3=0...(i)1s5t=0...(ii)s=513,t=1213BD=a+AD=a+513(a+15b)=813a+113bsayBD=uBB1,CB1=vCAv(ab)=b+1u(813a+113b)(813uv)a+(1113uv)b=0813uv=0...(iii)1113uv=0...(iv)u=913,v=89ΔB1CD=(1u)ΔB1CB=(1u)vΔABCΔB1CD=(1913)×89ΔABC=32117ΔABC=32×65117=160917.8

Commented by Rupesh123 last updated on 19/Nov/23

Nice solution,sir!

Commented by Anonim_X last updated on 19/Nov/23

great solution

greatsolution

Commented by mr W last updated on 20/Nov/23

certainly we can directly apply the  Ceva′s theorem, see below. but here  i applied the vector method.

certainlywecandirectlyapplytheCevastheorem,seebelow.buthereiappliedthevectormethod.

Commented by mr W last updated on 20/Nov/23

Answered by ajfour last updated on 19/Nov/23

△_0 =((5×3)/2)sin B=6.5  ⇒ sin B=((13)/(15))    let  D(0,0);  A(−a,0);  C(0,b)    y_(B1) =−(b/4)     sin B=(((b+(b/4)))/5)=((13)/(15))     ⇒  b=((52)/(15))  cos B=(((9+25−AC^2 )/(2×3×5)))=(√(1−(((13)/(15)))^2 ))  AC^2 =34−2(√(56)) =a^2 +b^2   x_(C1) =0=((−2a+x_B )/3)  ⇒  x_B =2a  eq of AC      y=(b/a)x+b  eq of BB_1      y=((y_B /x_B ))x   =−(b/(8a))x  intersection  (x_(B1) , y_(B1) )  (b/a)x+b=−(b/(8a))x  ⇒  x_(B1) =−((8a)/9) ⇒  y_(B1) =(b/9)  △_(B_1 CD) =((b(−x_B_1  ))/2)=((4ab)/9)                 =((4b(√((a^2 +b^2 )−b^2 )))/9)     =(4/9)(((52)/(15)))(√(34−2(√(56))−(((52)/(15)))^2 ))     ≈ 4.0809

0=5×32sinB=6.5sinB=1315letD(0,0);A(a,0);C(0,b)yB1=b4sinB=(b+b4)5=1315b=5215cosB=(9+25AC22×3×5)=1(1315)2AC2=34256=a2+b2xC1=0=2a+xB3xB=2aeqofACy=bax+beqofBB1y=(yBxB)x=b8axintersection(xB1,yB1)bax+b=b8axxB1=8a9yB1=b9B1CD=b(xB1)2=4ab9=4b(a2+b2)b29=49(5215)34256(5215)24.0809

Commented by mr W last updated on 19/Nov/23

i think in the diagram 1, 2 and 1, 4  just mean the ratios are 1:2 and 1:4.

ithinkinthediagram1,2and1,4justmeantheratiosare1:2and1:4.

Commented by ajfour last updated on 19/Nov/23

oh! thanks sir. dint dawn on me so..

oh!thankssir.dintdawnonmeso..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com