Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 20052 by Tinkutara last updated on 21/Aug/17

If the roots α and β of the equation  ax^2  + bx + c = 0 are real and of opposite  sign then the roots of the equation  α(x − β)^2  + β(x − α)^2  is/are  (1) Positive  (2) Negative  (3) Real and opposite sign  (4) Imaginary

$$\mathrm{If}\:\mathrm{the}\:\mathrm{roots}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$${ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{are}\:\mathrm{real}\:\mathrm{and}\:\mathrm{of}\:\mathrm{opposite} \\ $$$$\mathrm{sign}\:\mathrm{then}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\alpha\left({x}\:−\:\beta\right)^{\mathrm{2}} \:+\:\beta\left({x}\:−\:\alpha\right)^{\mathrm{2}} \:\mathrm{is}/\mathrm{are} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Positive} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Negative} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Real}\:\mathrm{and}\:\mathrm{opposite}\:\mathrm{sign} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{Imaginary} \\ $$

Answered by ajfour last updated on 21/Aug/17

  given   αβ < 0  second equation reformed is  (α+β)x^2 −4αβx+αβ(α+β)=0  D=16α^2 β^2 −4αβ(α+β)^2  >0  for αβ < 0   Hence roots of second equation       γ, δ are real.      γδ=(C/A)=((αβ(α+β))/(α+β)) = αβ < 0  Hence γ and δ have opposite signs .  (3) is the correct option .

$$\:\:{given}\:\:\:\alpha\beta\:<\:\mathrm{0} \\ $$$${second}\:{equation}\:{reformed}\:{is} \\ $$$$\left(\alpha+\beta\right){x}^{\mathrm{2}} −\mathrm{4}\alpha\beta{x}+\alpha\beta\left(\alpha+\beta\right)=\mathrm{0} \\ $$$${D}=\mathrm{16}\alpha^{\mathrm{2}} \beta^{\mathrm{2}} −\mathrm{4}\alpha\beta\left(\alpha+\beta\right)^{\mathrm{2}} \:>\mathrm{0} \\ $$$${for}\:\alpha\beta\:<\:\mathrm{0}\: \\ $$$${Hence}\:{roots}\:{of}\:{second}\:{equation} \\ $$$$\:\:\:\:\:\gamma,\:\delta\:{are}\:{real}. \\ $$$$\:\:\:\:\gamma\delta=\frac{{C}}{{A}}=\frac{\alpha\beta\left(\alpha+\beta\right)}{\alpha+\beta}\:=\:\alpha\beta\:<\:\mathrm{0} \\ $$$${Hence}\:\gamma\:{and}\:\delta\:{have}\:{opposite}\:{signs}\:. \\ $$$$\left(\mathrm{3}\right)\:{is}\:{the}\:{correct}\:{option}\:. \\ $$

Commented by Tinkutara last updated on 21/Aug/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com