Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 200568 by Rupesh123 last updated on 20/Nov/23

Commented by Frix last updated on 20/Nov/23

Let α=∠cd  0<f<∞ ⇔ 0<α<((2π)/5)

Letα=cd0<f<0<α<2π5

Commented by Rupesh123 last updated on 20/Nov/23

Nice one, sir!

Answered by a.lgnaoui last updated on 20/Nov/23

△ABC    BC^2 =AB^2 +AC^2         ( e+d)^2 =(((1+(√5) )^2 )/4)+(c+f)^2        ⇒  (d+e)^2 −(c+f)^2 =((3+(√5))/2)    (1)  △CDE      CD^2 =DE^2 +CE^2       c^2 −d^2 =(1/4)    (2)  △ABC / CDE  Semblables: ((AC)/(BC))=((EC)/(DC))     ((c+f)/(d+e))   =(d/c)  ⇒ (((c+f)^2 )/((d+e)^2 ))=(d^2 /c^2 )=(d^2 /(d^2 +(1/4)))(3)          ((1+(√5))/((c+f)))=(1/d)              d=((c+f)/(1+(√5)))    (4)    ⇒c+f=(1+(√5) )d      (d+e)^2 =(1+(√5) )^2 d^2 +((3+(√5))/2)   (2)           (1+(1/(4d^2 )))(c+f)^2 −(1+(√5) )^2 d^2 =((3+(√5))/2)    ⇒(c+f)^2 = ((4(6+2(√5) )d^4 +(6+2(√5) )d^2 )/(4d^2 +1))    f^2 +(((1+(√5))/2))^2 =e^2 +(1/4)     e^2 −f^2 =((5+2(√5))/4)       f=(√(e^2 −((5+2(√5))/4)))      (5)       (1)⇒(d+e)^2 =(c+(√(e^2 −((5+2(√5))/4))) )^2 +((3+(√5))/2)  d^2 +e^2 +2de=c^2 +e^2 −((5+2(√5))/4)+((3+(√5))/2)   +2c((√(e^2 −((5+2(√5))/4))) )       [  2de−c(√(4e^2 −5−2(√5) )) =(1/2)       4de=(√((4d^2 +1)(4e^2 −5−2(√5) ))) =1  (i)          (d+e)=(√(2(3+(√5))d^2 +((3+(√5))/2)))    (ii)         2d+2e=2(√((1/2)(3+(√5) )×(2d)^2 +((3+(√5))/2)))      2d=x      2e=y      (ii)      x+y=2(√((1/2)(3+(√5) )(1+x^2 )))    (i)        xy    =(√((x^2 +1)(y^2 −5−2(√5) )) )−1         ⇒(x+y)^2 =  2(3+(√5) )(1+x^2 )           (xy+1)^2 =(  x^2 +1)(y^2 −5−2(√5) )       { ((x^2 +y^2 +2xy=2(3+(√5) )x^2 +2(3+(√5) ))),((x^2 y^2 +2xy+1=x^2 y^2 −(5+2(√5) )x^2 )) :}                                                   +y^2 −(5+2(√5)        (5+2(√5) )x^2 +y^2 +2xy=2(3+(√5) )      (I)    2xy  =y^2 −(5+2(√5) )x^2 −(6+2(√5) )   (II)    (I)−(II)⇒     (5+2(√5) )x^2 +y^2 =2(3+(√5) )−y^2 +                   (5+2(√5) )x^2 +(6+2(√5) )    ⇒         y=(√(6+2(√5)))  alors       e=((√(2(3+(√5) )))/2)    (ii)   x=2(√((1/2)(3+(√5) )(1+x^2 ))) −(√(6+2(√5)))                         ⇒ 2(3+(√5) )(1+x^2 )=(x+(√(6+2(√5)[)) )^2   (6+2(√5) )x^2 +6+2(√5) =x^2 +6+2(√5) +                         2x(√(6+2(√5)))  (5+2(√5) )x^2 −2x(√(6+2(√5) )) =0     x=((2(√(6+2(√5))))/(5+2(√5)))       ⇒ d=((√(6+2(√5)))/(5+2(√5)))     { ((d=((√(6+2(√5)))/(5+2(√5))))),((e=((√(6+2(√5)))/2))) :}     calcul de f    (5)⇒   f=(√(e^2 −((5+2(√5))/4)))      =(√(((6+2(√5))/4)−((5+2(√5))/4)))            ⇒         f=(1/2)

ABCBC2=AB2+AC2(e+d)2=(1+5)24+(c+f)2(d+e)2(c+f)2=3+52(1)CDECD2=DE2+CE2c2d2=14(2)ABC/CDESemblables:ACBC=ECDCc+fd+e=dc(c+f)2(d+e)2=d2c2=d2d2+14(3)1+5(c+f)=1dd=c+f1+5(4)c+f=(1+5)d(d+e)2=(1+5)2d2+3+52(2)(1+14d2)(c+f)2(1+5)2d2=3+52(c+f)2=4(6+25)d4+(6+25)d24d2+1f2+(1+52)2=e2+14e2f2=5+254f=e25+254(5)(1)(d+e)2=(c+e25+254)2+3+52d2+e2+2de=c2+e25+254+3+52+2c(e25+254)[2dec4e2525=124de=(4d2+1)(4e2525)=1(i)(d+e)=2(3+5)d2+3+52(ii)2d+2e=212(3+5)×(2d)2+3+522d=x2e=y(ii)x+y=212(3+5)(1+x2)(i)xy=(x2+1)(y2525)1(x+y)2=2(3+5)(1+x2)(xy+1)2=(x2+1)(y2525){x2+y2+2xy=2(3+5)x2+2(3+5)x2y2+2xy+1=x2y2(5+25)x2+y2(5+25(5+25)x2+y2+2xy=2(3+5)(I)2xy=y2(5+25)x2(6+25)(II)(I)(II)(5+25)x2+y2=2(3+5)y2+(5+25)x2+(6+25)y=6+25alorse=2(3+5)2(ii)x=212(3+5)(1+x2)6+252(3+5)(1+x2)=(x+6+25[)2(6+25)x2+6+25=x2+6+25+2x6+25(5+25)x22x6+25=0x=26+255+25d=6+255+25{d=6+255+25e=6+252calculdef(5)f=e25+254=6+2545+254f=12

Commented by a.lgnaoui last updated on 20/Nov/23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com