Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 200684 by Spillover last updated on 21/Nov/23

                ∫_(−4π) ^(4π)    ((∣x∣ sin^(2n) x)/(sin^(2n) x+cos^(2n) x))dx

4π4πxsin2nxsin2nx+cos2nxdx

Answered by witcher3 last updated on 22/Nov/23

=2∫_0 ^(4π) ((xsin^(2n) (x))/(cos^(2n) (x)+sin^(2n) (x)))dx  =2[∫_0 ^(2π) ((xsin^(2n) (x))/(sin^(2n) (x)+cos^(2n) (x))) +(((2π+x)sin^(2n) (x))/(sin^(2n) (x)+cos^(2n) (x)))dx]  =4∫_0 ^(2π) (((π+x)sin^(2n) (x))/(sin^(2n) (x)+cos^(2n) (x)))dx  =4∫_0 ^π ((π+x)/(sin^(2n) (x)+cos^(2n) (x)))sin^(2n) (x)+4∫_0 ^π ((π+2π−x)/(sin^(2n) (x)+cos^(2n) (x)))sin^(2n) (x)  =4∫_0 ^π ((4π)/(sin^(2n) (x)+cos^(2n) (x)))sin^(2n) (x)  =16π[∫_0 ^(π/2) ((sin^(2n) (x))/(cos^(2n) (x)+cos^(2n) (x)))+∫_(π/2) ^π ((sin^(2n) (x))/(cos^(2n) (x)+sin^(2n) (x)))dx]  x→(π/2)+x in 2nd  cos^(2n) (x+(π/2))=sin^(2n) (x);sin^(2n) (x+(π/2))=cos^(2n) (x)  I=16π∫_0 ^(π/z) ((sin^(2n) (x)+cos^(2n) (x))/(cos^(2n) (x)+sin^(2n) (x)))dx  =16π∫_0 ^(π/2)  dx=8π^2

=204πxsin2n(x)cos2n(x)+sin2n(x)dx=2[02πxsin2n(x)sin2n(x)+cos2n(x)+(2π+x)sin2n(x)sin2n(x)+cos2n(x)dx]=402π(π+x)sin2n(x)sin2n(x)+cos2n(x)dx=40ππ+xsin2n(x)+cos2n(x)sin2n(x)+40ππ+2πxsin2n(x)+cos2n(x)sin2n(x)=40π4πsin2n(x)+cos2n(x)sin2n(x)=16π[0π2sin2n(x)cos2n(x)+cos2n(x)+π2πsin2n(x)cos2n(x)+sin2n(x)dx]xπ2+xin2ndcos2n(x+π2)=sin2n(x);sin2n(x+π2)=cos2n(x)I=16π0πzsin2n(x)+cos2n(x)cos2n(x)+sin2n(x)dx=16π0π2dx=8π2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com