All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 200684 by Spillover last updated on 21/Nov/23
∫−4π4π∣x∣sin2nxsin2nx+cos2nxdx
Answered by witcher3 last updated on 22/Nov/23
=2∫04πxsin2n(x)cos2n(x)+sin2n(x)dx=2[∫02πxsin2n(x)sin2n(x)+cos2n(x)+(2π+x)sin2n(x)sin2n(x)+cos2n(x)dx]=4∫02π(π+x)sin2n(x)sin2n(x)+cos2n(x)dx=4∫0ππ+xsin2n(x)+cos2n(x)sin2n(x)+4∫0ππ+2π−xsin2n(x)+cos2n(x)sin2n(x)=4∫0π4πsin2n(x)+cos2n(x)sin2n(x)=16π[∫0π2sin2n(x)cos2n(x)+cos2n(x)+∫π2πsin2n(x)cos2n(x)+sin2n(x)dx]x→π2+xin2ndcos2n(x+π2)=sin2n(x);sin2n(x+π2)=cos2n(x)I=16π∫0πzsin2n(x)+cos2n(x)cos2n(x)+sin2n(x)dx=16π∫0π2dx=8π2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com