Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 200685 by Spillover last updated on 21/Nov/23

                     ∫_0 ^(π/4) ln (1+tanx)dx

0π4ln(1+tanx)dx

Answered by som(math1967) last updated on 22/Nov/23

 I=∫_0 ^(π/4) ln[1+tan((π/4)−x)]dx   I=∫_0 ^(π/4) ln[1+((1−tanx)/(1+tanx))]dx  I=∫_0 ^(π/4) ln((2/(1+tanx)))dx   I=∫_0 ^(π/4) ln2dx−∫_0 ^(π/4) ln(1+tanx)dx  I=∫_0 ^(π/4) ln2 dx−I  2I=ln2[x]_0 ^(π/4)    I=(π/8)ln2

I=0π4ln[1+tan(π4x)]dxI=0π4ln[1+1tanx1+tanx]dxI=0π4ln(21+tanx)dxI=0π4ln2dx0π4ln(1+tanx)dxI=0π4ln2dxI2I=ln2[x]0π4I=π8ln2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com