All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 200722 by cortano12 last updated on 22/Nov/23
FindallpolynomialsP(x)withrealcoefficientssuchthatforallnonzerorealnumbersx,P(x)+P(1x)=P(x+1x)+P(x−1x)2
Commented by Frix last updated on 22/Nov/23
P(x)=ax2[∨P(x)=0]
Answered by witcher3 last updated on 22/Nov/23
x→fx−1x;]0,+∞[→]−∞,+∞[bijectivep(1x)+p(x)=12(p(x+1x)+p(−x+1x)=12(p(x+1x)+p(x−1x))⇒p(x−1x)=p(−(1x−x))⇔∀a∈Rsincebijectilnoff.p(a)=p(−a)⇒p(x)=∑nk=0akx2k;p∈R2n[X]x=et,p(et)+p(e−t)=12p(2ch(t))+p(2sh(t))⇔2p(et)+2p(e−t)=p(2ch(t))+p(2sh(t))⇔4∑2nk=0akch(2kt)=∑2nk=0ak22k(ch2k(t)+sh2k(t))⇔∀k∈[0,2]4ch(2kt)=22k(ch2k(t)+sh2k(t)k=1true,∀k⩾24ch(2kt)=22k(ch2k(t)+sh2k(t);t=04=22kfalsek⩾2⇒p(x)=a0+a1x2;p(1)+p(11)=12(p(2)+p(0))⇔2(a0+a1)=a0+2a1a0=0p(x)=ax2worckuniquebyconstrucrion;a∈R
Terms of Service
Privacy Policy
Contact: info@tinkutara.com