Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 200747 by Rupesh123 last updated on 22/Nov/23

Answered by MM42 last updated on 22/Nov/23

lnx=u⇒∫_1 ^∞  (du/u^2 ) =−(1/u)]_1 ^∞ =1 ✓

lnx=u1duu2=1u]1=1

Commented by esmaeil last updated on 23/Nov/23

=−(1/(lnx))=(1/(−lnx))=(1/(ln(1/x)))]_e ^∞ =^(?????) 1

Missing \left or extra \right

Commented by MM42 last updated on 23/Nov/23

or  −(1/(lnx))]_e ^∞ =−(1/(ln∞))+(1/(lne))=1

or1lnx]e=1ln+1lne=1

Commented by MM42 last updated on 23/Nov/23

lnx=u⇒if  x→e⇒u→1  &  x→∞⇒u→∞  ⇒−(1/u)]_1 ^∞  =−(1/∞)+(1/1)=1

lnx=uifxeu1&xu1u]1=1+11=1

Answered by Calculusboy last updated on 28/Nov/23

Solution: let u=Inx    xdu=dx  when x=∞ u=∞  and when x=e  u=1  I=∫_1 ^∞ ((xdu)/(x(u)^2 ))   ⇔  I=∫_1 ^∞ (du/u^2 )  I=−[(1/u)]_1 ^∞ +C  I=−[(1/∞)−(1/1)]  I=−[0−1]  I=1  ∴∫_e ^∞ (1/(x(In(x))^2 ))dx=1

Solution:letu=Inxxdu=dxwhenx=u=andwhenx=eu=1I=1xdux(u)2I=1duu2I=[1u]1+CI=[111]I=[01]I=1e1x(In(x))2dx=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com