Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 200778 by sonukgindia last updated on 23/Nov/23

Answered by MM42 last updated on 23/Nov/23

if  n=1⇒∫_0 ^∞ (1/(1+x^2 ))dx  =tan^(−1) (x)]_0 ^∞ =(π/2)   for  n>1  x=tanu⇒∫_0 ^(π/2)  ((1+tan^2 u)/((1+tan^2 u)^n ))du=∫_0 ^(π/2) cos^(2n−2) xdx=I_(2n−2)   by “expect  for  expect ”  ⇒I_(2n−2) =sinu×cos^(2n−3) u]_0 ^(π/2)  +(2n−3)∫_0 ^(π/2) cos^(2n−4) u×(1−cos^2 u)du  ⇒I_(2n−2) =((2n−3)/(2n−2)) I_(2n−4) =((2n−3)/(2n−2))×((2n−5)/(2n−4))×...×(1/2)I_2   =((2n−3)/(2n−2))×((2n−5)/(2n−4))×...×(1/2)×(π/2)  ✓

ifn=1011+x2dx=tan1(x)]0=π2forn>1x=tanu0π21+tan2u(1+tan2u)ndu=0π2cos2n2xdx=I2n2byexpectforexpectI2n2=sinu×cos2n3u]0π2+(2n3)0π2cos2n4u×(1cos2u)duI2n2=2n32n2I2n4=2n32n2×2n52n4×...×12I2=2n32n2×2n52n4×...×12×π2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com