Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 200801 by mnjuly1970 last updated on 23/Nov/23

Answered by witcher3 last updated on 24/Nov/23

introduce erfc(x)=(2/( (√π)))∫_0 ^x e^(−t^2 ) dt  φ=∫_0 ^∞ ∫_0 ^∞ ∫_0 ^∞ e^(−(x+y+z)^2 ) dxdydz  ∫_0 ^∞ e^(−(x+y+z)^2 ) dx,x+y+z=r  =∫_(y+z) ^∞ e^(−r^2 ) dr=((√π)/2)−∫_0 ^(y+z) e^(−r^2 ) dr=((√π)/2)(1−erfc(y+z)  φ=((√π)/2)∫_0 ^∞ ∫_0 ^∞ (1−erfc(y+z))dydz=((√π)/2)∫_0 ^∞ ∫_z ^∞ (1−erfc(y))dydz  ∫_z ^∞ (1−erfc(y)dy=lim_(x→∞) ∫_z ^x (1−erfc(y))dy  =lim_(x→∞) [y−yerfc(y)]_z ^x +(2/( (√π)))∫_z ^x ye^(−y^2 ) dy  =lim_(x→∞) (x−xerfc(x)−(e^(−x^2 ) /( (√π)))+zerfc(z)−z+(e^(−z^2 ) /( (√π))))  lim_(x→∞) (x−xerfc(x))=lim_(x→∞) (x−((2x)/( (√π)))∫_0 ^x e^(−t^2 ) dt)  =lim_(x→∞) ∣x−x(1−(2/( (√π)))∫_x ^∞ e^(−t^2 ) dt)∣≤lim_(x→∞)  ∣((2x)/( (√π)))∫_x ^∞ e^(−t) dt∣  =lim_(x→∞) (xe^(−x) )=0  ∅=((√π)/2)∫_0 ^∞ (zerfc(z)−z+(e^(−z^2 ) /( (√π))))dz  ∫_0 ^∞ e^(−z^2 ) =((√π)/2)  ∫_0 ^∞ z(erfc(z)−1)dz=[(z^2 /2)(erfc(z)−1)]_0 ^∞ −∫_0 ^∞ (z^2 /2)((2/( (√π)))e^(−z^2 ) )dz  =−(1/( (√π)))∫_0 ^∞ z^2 e^(−z^2 ) dz=−(1/(2(√π)))∫_0 ^∞ t^((3/2)−1) e^(−t) =−(1/4)  φ=((√π)/2)(−(1/4)+(1/2))=((√π)/8)  lim_(x→∞) (∣(x^2 /2)(erfc(x)−1)∣)=(x^2 /2)∫_x ^∞ e^(−t^2 ) ≤(x^2 /2)e^(−x) →0  φ=((√π)/8)

introduceerfc(x)=2π0xet2dtϕ=000e(x+y+z)2dxdydz0e(x+y+z)2dx,x+y+z=r=y+zer2dr=π20y+zer2dr=π2(1erfc(y+z)ϕ=π200(1erfc(y+z))dydz=π20z(1erfc(y))dydzz(1erfc(y)dy=limxzx(1erfc(y))dy=limx[yyerfc(y)]zx+2πzxyey2dy=limx(xxerfc(x)ex2π+zerfc(z)z+ez2π)limx(xxerfc(x))=limx(x2xπ0xet2dt)=limxxx(12πxet2dt)∣⩽limx2xπxetdt=limx(xex)=0=π20(zerfc(z)z+ez2π)dz0ez2=π20z(erfc(z)1)dz=[z22(erfc(z)1)]00z22(2πez2)dz=1π0z2ez2dz=12π0t321et=14ϕ=π2(14+12)=π8limx(x22(erfc(x)1))=x22xet2x22ex0ϕ=π8

Commented by mnjuly1970 last updated on 24/Nov/23

      thanks alot sir  so nice solution

thanksalotsirsonicesolution

Commented by witcher3 last updated on 24/Nov/23

withe Pleasur

withePleasur

Terms of Service

Privacy Policy

Contact: info@tinkutara.com