All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 200801 by mnjuly1970 last updated on 23/Nov/23
Answered by witcher3 last updated on 24/Nov/23
introduceerfc(x)=2π∫0xe−t2dtϕ=∫0∞∫0∞∫0∞e−(x+y+z)2dxdydz∫0∞e−(x+y+z)2dx,x+y+z=r=∫y+z∞e−r2dr=π2−∫0y+ze−r2dr=π2(1−erfc(y+z)ϕ=π2∫0∞∫0∞(1−erfc(y+z))dydz=π2∫0∞∫z∞(1−erfc(y))dydz∫z∞(1−erfc(y)dy=limx→∞∫zx(1−erfc(y))dy=limx→∞[y−yerfc(y)]zx+2π∫zxye−y2dy=limx→∞(x−xerfc(x)−e−x2π+zerfc(z)−z+e−z2π)limx→∞(x−xerfc(x))=limx→∞(x−2xπ∫0xe−t2dt)=limx→∞∣x−x(1−2π∫x∞e−t2dt)∣⩽limx→∞∣2xπ∫x∞e−tdt∣=limx→∞(xe−x)=0∅=π2∫0∞(zerfc(z)−z+e−z2π)dz∫0∞e−z2=π2∫0∞z(erfc(z)−1)dz=[z22(erfc(z)−1)]0∞−∫0∞z22(2πe−z2)dz=−1π∫0∞z2e−z2dz=−12π∫0∞t32−1e−t=−14ϕ=π2(−14+12)=π8limx→∞(∣x22(erfc(x)−1)∣)=x22∫x∞e−t2⩽x22e−x→0ϕ=π8
Commented by mnjuly1970 last updated on 24/Nov/23
thanksalotsirsonicesolution
Commented by witcher3 last updated on 24/Nov/23
withePleasur
Terms of Service
Privacy Policy
Contact: info@tinkutara.com