Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 200840 by Rydel last updated on 24/Nov/23

lim_(x→a) ((x^n sin a−a^n sin x)/(x−a))

limxaxnsinaansinxxa

Answered by MM42 last updated on 24/Nov/23

lim_(x→a)  ((x^n sina−a^n sina+a^n sina−a^n sinx)/(x−a))  =lim_(x→a)  (((x^n −a^n )sina−(sinx−sina)a^n )/(x−a))  =lim_(x→a) ( (((x−a)(x^(n−1) +x^(n−1) a+...+a^(n−1) )sina)/(x−a))−((2sin(((x−a)/2)))/(x−a))×cos(((x+a)/2))×a^n )  =na^(n−1) sina−cosa   ✓

limxaxnsinaansina+ansinaansinxxa=limxa(xnan)sina(sinxsina)anxa=limxa((xa)(xn1+xn1a+...+an1)sinaxa2sin(xa2)xa×cos(x+a2)×an)=nan1sinacosa

Commented by Rydel last updated on 24/Nov/23

thank you very much

thankyouverymuch

Answered by BaliramKumar last updated on 24/Nov/23

lim_(x→a) (((d/dx)(x^n sin a−a^n sin x))/((d/dx)(x−a))) = ((nx^(n−1) sina−a^n cosx)/1)  na^(n−1) sina−a^n cosa = ((a^n (nsina−acosa))/a)

limxaddx(xnsinaansinx)ddx(xa)=nxn1sinaancosx1nan1sinaancosa=an(nsinaacosa)a

Terms of Service

Privacy Policy

Contact: info@tinkutara.com