All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 200873 by cortano12 last updated on 25/Nov/23
Commented by witcher3 last updated on 26/Nov/23
tan(3x2)∈[−3,3]tg(3.x2)=3tg(x2)−tg3(x2)1−3tg2(x2)sin(x)3−tan2(3x2)=2+cos(x)⇔3−[3tan(x2)−tan3(x2)1−3tan2(x2)]2=3cos2(x2)+sin2(x2)2sin(x2)cos(x2)=3+tg2(x2)2tg(x2)a=tan(x2)⇔3−[(3a−a3)(1−3a2)2]2=3+a22a⇒3(9a4−6a2+1)−(9a2+a6−6a4)(1−3a2)2=(a4+6a2+9)4a2a2=y⇔−y3+33y2−27y+3(1−3y)2=y2+6y+94y4y(−y3+33y2−27y+3)=(9y2−6y+1)(y2+6y+9)9y4+48y3+46y2−48y+9=−4y4+132y3−108y2+12y13y4−84y3+154y2−60y+9=0...PInZ/3Z⇒2y2≡0[3]⇒3∣yy=3issolutionofP13y4−84y3+154y2−60y+9=(y−3)2(13y2−6y+1)onlyonesolutionoverRa=+−3tan(x2)=3⇒x2=tan−1(3)⇒x=2π3+2kπ..worcktan(x2)=−3⇒x=−2π3+2kπ...notworcking
Answered by Frix last updated on 26/Nov/23
c=cosx(1−c)(1+c)3−(1−c)(1+2c)2(1+c)(1−2c)2−c=2c≠−1∧c≠121−c2(8c3−6c+1)=(2+c)∣1−2c∣c4−c35−11c220+c10+110=0(c+12)2(c2−6c5+25)=0c=−12cosx=−12x=2nπ±2π3Testing⇒x=2nπ+2π3
Terms of Service
Privacy Policy
Contact: info@tinkutara.com