Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 200886 by essaad last updated on 26/Nov/23

resoudre dans R :    ((3+x))^(1/3)  −((3−x))^(1/3)  =((9−x^2 ))^(1/3)

resoudredansR:3+x33x3=9x23

Answered by Frix last updated on 26/Nov/23

a^(1/3) −b^(1/3) =c^(1/3)   a−b−3a^(1/3) b^(1/3) (a^(1/3) −b^(1/3) )=c  a−b−3a^(1/3) b^(1/3) c^(1/3) =c  27abc=(a−b−c)^3   c=ab  27a^2 b^2 =(a−b−ab)^3   a=3+x∧b=3−x  27(x−3)^2 (x+3)^2 =(x^2 +2x−9)^3   x^6 +6x^5 −42x^4 −100x^3 +621x^2 +486x−2916=0  No exact solution possible  x≈−8.70670378^★ ∨x≈2.73590400  ^★  only if we use ((−r))^(1/3) =−(r)^(1/3)

a13b13=c13ab3a13b13(a13b13)=cab3a13b13c13=c27abc=(abc)3c=ab27a2b2=(abab)3a=3+xb=3x27(x3)2(x+3)2=(x2+2x9)3x6+6x542x4100x3+621x2+486x2916=0Noexactsolutionpossiblex8.70670378x2.73590400onlyifweuser3=r3

Commented by essaad last updated on 26/Nov/23

thanks sir

thankssir

Answered by Rasheed.Sindhi last updated on 26/Nov/23

Another way  ((3+x))^(1/3)  −((3−x))^(1/3)  −((9−x^2 ))^(1/3)  =0  a=((3+x))^(1/3)  ,b= ((3−x))^(1/3)   , c=((9−x^2 ))^(1/3)   a−b−c=0   determinant (((a^3 −b^3 −c^3 −3abc=(a−b−c)(a^2 +b^2 +c^2 +ab−bc+ca))))    a^3 −b^3 −c^3 −3abc=0  (3+x)−(3−x)−(9−x^2 )−3(((3+x))^(1/3)  )(((3−x))^(1/3)  )(((9−x^2 ))^(1/3)  )=0  x^2 +2x−9=3(((9−x^2 )^2 ))^(1/3)  =0  (x^2 +2x−9)^3 =27(x^2 −9)^2   x^6 +6x^5 −42x^4 −100x^3 +621x^2 +486x−2916=0  x≈−8.70670377676 , 2.73590400403

Anotherway3+x33x39x23=0a=3+x3,b=3x3,c=9x23abc=0a3b3c33abc=(abc)(a2+b2+c2+abbc+ca)a3b3c33abc=0(3+x)(3x)(9x2)3(3+x3)(3x3)(9x23)=0x2+2x9=3(9x2)23=0(x2+2x9)3=27(x29)2x6+6x542x4100x3+621x2+486x2916=0x8.70670377676,2.73590400403

Answered by mr W last updated on 26/Nov/23

((3+x))^(1/3) −((3−x))^(1/3) =(((3+x)(3−x)))^(1/3)   say u=((3+x))^(1/3) ,v=((3−x))^(1/3)   u−v=uv ⇒v=(u/(1+u))  u^3 +v^3 =6  u^3 +(u^3 /((1+u)^3 ))=6  u^6 +3u^5 +3u^4 −4u^3 −18u^2 −18u−6=0  ⇒u≈−1.787016, 1.790059  ⇒x=u^3 −3≈−8.706704, ≈2.735906

3+x33x3=(3+x)(3x)3sayu=3+x3,v=3x3uv=uvv=u1+uu3+v3=6u3+u3(1+u)3=6u6+3u5+3u44u318u218u6=0u1.787016,1.790059x=u338.706704,2.735906

Answered by Rasheed.Sindhi last updated on 26/Nov/23

((3+x))^(1/3)  −((3−x))^(1/3)  =((9−x^2 ))^(1/3)   Dividing by ((9−x^2 ))^(1/3)  :  (1/( ((3−x))^(1/3)  ))−(1/( ((3+x))^(1/3)  ))=1  a=(1/( ((3−x))^(1/3)  )) , b=(1/( ((3+x))^(1/3)  )) ⇒  a−b−1=0   determinant (((a^3 −b^3 −1−3ab=(a−b−1)_(⇒a^3 −b^3 −1−3ab=0                    ) (a^2 +b^2 +1+ab−b+a))))  (1/( 3−x ))−(1/(3+x))−1−3((1/( ((3−x))^(1/3)  )))((1/( ((3+x))^(1/3)  )))=0  (1/( 3−x ))−(1/(3+x))−1=3((1/( ((3−x))^(1/3)  )))((1/( ((3+x))^(1/3)  )))  ((3+x−3+x−9+x^2 )/(9−x^2 ))=(3/( ((9−x^2 ))^(1/3) ))  x^2 +2x−9=3(9−x^2 )^(2/3)   (x^2 +2x−9)^3 =27(9−x^2 )^2   x^6 +6x^5 −42x^4 −100x^3 +621x^2 +486x−2916=0  x≈−8.70670377676 , 2.73590400403

3+x33x3=9x23Dividingby9x23:13x313+x3=1a=13x3,b=13+x3ab1=0a3b313ab=(ab1)a3b313ab=0(a2+b2+1+abb+a)13x13+x13(13x3)(13+x3)=013x13+x1=3(13x3)(13+x3)3+x3+x9+x29x2=39x23x2+2x9=3(9x2)2/3(x2+2x9)3=27(9x2)2x6+6x542x4100x3+621x2+486x2916=0x8.70670377676,2.73590400403

Terms of Service

Privacy Policy

Contact: info@tinkutara.com